
Implemented in #2455 TL;DR Get rid of DoFn.ProcessContinuation, stop()/resume() methods, 
report output watermark via ProcessContext continuously along with the output itself. 
Partially reverted in #3360 after figuring out a sensible semantics for resume() 

Output watermark reporting 
Currently an SDF reports a watermark on its future output by returning a 
ProcessContinuation, e.g.: return resume().withFutureOutputWatermark(...). 

This is problematic for several reasons: 

●​ This assumes that the watermark is needed only after the @ProcessElement call 
completes - and that the call completes at all. But a runner like Flink could let a 
@ProcessElement call run for a very long time, and would likely still be interested in 
knowing what timestamps of future outputs from this currently running call will be - i.e. in 
continuously updating the watermark while the call runs.​
I.e., the current API restrictively assumes a micro-batch implementation. 

●​ If a runner performs a dynamic split on the running @ProcessElement call, there is 
simply no place in the API to report a watermark for the residual restriction.​
The current API is unnecessarily focused on checkpointing - i.e. it assumes that the 
residual restriction becomes relevant only once the @ProcessElement call completes, 
but this is not always the case: residual restriction, and its watermark, become 
relevant immediately when a split happens. 

●​ The SDF might be outputting into multiple PCollections, and it might want to make 
different promises about outputting to each of them - i.e. watermark reporting should 
be per output tag. 

●​ The entire ProcessContinuation API is ill-defined, for reasons I outline below. 
 
Because of this, I suggest to report the watermark differently: 

●​ Add methods ProcessContext.updateWatermark(Instant) and 
updateWatermark(OutputTag<?>, Instant) 

●​ Runners will use this to continually have access to the most up-to-date promise from the 
DoFn about timestamps of future output from the current call.​
In practice, current runners tend to be interested only in the most recent value when the 
@ProcessElement call completes, and they commit it together with the output from the 
call, but in principle, this API will allow runners to potentially do more. 

●​ This applies not only to SDF, but also e.g. to DoFn's that use timers to resume the call 
later. 

https://github.com/apache/beam/pull/2455
https://github.com/apache/beam/pull/3360


●​ There are some cases (e.g. Google Cloud PubSub) where it'd be useful to allow calling 
these methods concurrently to c.output(), e.g. by polling the third-party service for a 
watermark asynchronously in a thread. 

With this, e.g. the relevant part of KafkaIO on SDF will look something like this: 
 

@ProcessElement 

public void process(ProcessContext c, OffsetRangeTracker tracker) { 

​ KafkaClient client = Kafka.connect(c.element()); 

​ client.seek(tracker.start()); 

​ while (true) { 

​ ​ KafkaMessage message = client.poll(); 

​ ​ if (!tracker.tryClaim(message.offset())) return; 

​ ​ c.updateWatermark(message.timestamp()); 

​ ​ c.output(message); 

​ } 

} 

 

ProcessContinuation, and returning from @ProcessElement 
While implementing SDFs for testing purposes, I often found myself wondering when I should 
return stop() vs. resume() from the @ProcessElement call. 
 
First, for reasons above, "future output watermark" should not be part of ProcessContinuation. 
All that remains is the stop() / resume() signal. 
 
I think the proper way to treat them is as follows: 

●​ stop() means "I have completed all the work associated with the current value of 
tracker.currentRestriction()".​
⇒ after tracker.tryClaim() returned false, you have to return stop(). 

●​ resume() means "I have not completed all the work associated with the current value of 
tracker.currentRestriction()".​
Then, runner needs to know how much work you have completed and how much yet 
needs to be done - that's what RestrictionTracker.checkpoint() is for.​
This is also the reason why a checkpoint() method is necessary, in addition to a 
splitAfterFractionOfRemainder() method. 

●​ Generally a @ProcessElement method of an SDF is a loop, where on each iteration you: 
○​ tryClaim() a block - process it if successful, or return stop() otherwise 
○​ or you voluntarily return stop() because you somehow know that there's 

nothing more to tryClaim() within this restriction 



○​ or you voluntarily return resume() because you somehow know that there's 
currently nothing more to tryClaim() within this restriction, but there might be 
later 

However, having resume() puts us into a tricky situation implementation-wise. Suppose 
that @ProcessElement was running, and runner already took a checkpoint because the call 
emitted too much output, or ran for too long. So the runner already has a residual restriction. 

Now, suppose that the call voluntarily returns resume()! Now the runner has two residual 
restrictions - one for the work it already split off, one for the work that the call just said it didn't 
complete; both need to be processed. 
 
Current runner-agnostic implementation of SDF, and most current runners, can't really do this 
easily - the current implementation uses a sequential checkpoint loop - i.e. when 
@ProcessElement completes, it assumes that there's exactly 1 residual restriction (checkpoint 
to resume from), and sets a timer to process it. 
 
I would like to emphasize that the current implementation of SDF is buggy in this respect - 
the only reason we didn't notice is that current SDF unit tests are themselves buggy: they don't 
return stop() after a failed tryClaim. 
 
Moreover, if resume() specified a resume delay, it's not clear which of these two residual 
restrictions it refers to. Also, in some cases this “two residual restrictions” situation can lead to 
an exponential proliferation of residual restrictions. 
 
Because of all this, let’s remove ProcessContinuation and say that SDF.@ProcessElement: 

●​ must return void 
●​ must guarantee that once it returns, the entire tracker.currentRestriction() has 

been processed (even though the restriction of course might have changed while the call 
ran). 

 
For use cases where one wants to resume processing later - I propose to (at least temporarily) 
declare that out of scope of SDF, and let people just use the timers API. 

Overall 
●​ Add c.updateWatermark() and report watermark continuously via this method. 
●​ Make SDF.@ProcessElement return void, which is simpler for users though it doesn't 

allow to resume after a specified time 
●​ Declare that SDF.@ProcessElement must guarantee that after it returns, the entire 

tracker.currentRestriction() was processed. 
●​ Add a bool RestrictionTracker.done() method to enforce the bullet above. 
●​ For resuming after specified time, use regular DoFn with state and timers API. 


	Output watermark reporting 
	ProcessContinuation, and returning from @ProcessElement 
	Overall 

