

NOTE: This proposal has been superseded
Please see Revision #3 of this proposal.
-Chris (Jan 17, 2021)

Protocol-based Actor Isolation: Draft #2
Author: Chris Lattner
November 18, 2020

Major Contributors:
Dave Abrahams, Doug Gregor, Paul Cantrell, Matthew Johnson

Introduction
The Swift Concurrency Roadmap was recently announced, and a key part of that roadmap is a
proposal for an actor system. Actors are a powerful well known framework for building
concurrent systems out of computations that communicate asynchronously.

One of the major goals of the proposed actor system is to “provide a mechanism for isolating
state in concurrent programs to eliminate data races.” Such a mechanism will be a major
progression - most widely used languages and systems that provide concurrent programming
abstractions do so in a way that exposes programmers to a wide range of bugs, including race
conditions, deadlocks and other problems. That said, the proposal for actors does not actually
provide a mechanism for isolating mutable state or eliminating data races.

This proposal describes an approach to address one of the challenging problems in this space -
how to safely transfer values between actors (e.g. for arguments and result values of actor
method calls). This approach is almost entirely library defined - the only language/compiler
extension (for auto synthesizing a protocol) is already well precedented in Swift.

Global variables (and static members of classes) are another problem that is not covered in the
core proposal - they are an orthogonal issue that is explored in the “Actors vs Global State”
paper.

Motivation
Each actor instance in a program represents an “island of single threaded-ness”, which makes
them a natural synchronization point that holds a bag of mutable state. Each actor performs
computation in parallel with other actors, but we want the vast majority of code in such a system
to be synchronization free -- building on the logical independence of the actor, and using its
queue as a synchronization point for its data.

https://docs.google.com/document/d/1repOkDd92ZFebrvrGWX_mgqbKOoqy-5V0QJPI_lB6TA/edit#heading=h.8yjypfopj8pd
https://github.com/lattner
https://forums.swift.org/t/swift-concurrency-roadmap/41611/
https://forums.swift.org/t/concurrency-actors-actor-isolation/41613/
https://forums.swift.org/t/concurrency-actors-actor-isolation/41613/
https://en.wikipedia.org/wiki/Actor_model

However, this model is only safe when actors do not share unprotected mutable state: if two
actors have a pointer to the same class instance and mutate state contained within it, they will
race and have other synchronization problems. As such, a key question is: “when and how do
we allow data to be transferred between actors?” Such transfers occur in arguments and results
of actor method calls, in the proposed cross-actor ‘let’ references, and with global/static
variables.

The Swift Language aspires to provide a safe and powerful programming model: in the case of
an actor model, we want to achieve three things:

1)​ We want Swift programmers to get a static compiler error when they try to pass a value
between actors that could introduce unprotected shared mutable state.

2)​ We want advanced programmers to be able to implement libraries with sophisticated
techniques (e.g. a concurrent hash table) that can be used in a safe way by others.

3)​ We need to embrace the existing world, which contains a lot of code that wasn’t
designed with the actor model in mind. We need a smooth and incremental migration
story.

Before we jump into the proposed solution, let’s take a look at some common cases that we
would like to be able to model along with the opportunities and challenges of each. This will help
us reason about the design space we need to cover.

💖 Swift + Value Semantics
The first kind of type we need to support are simple values like integers. These can be trivially
transferred between actors because they do not contain pointers.

Going beyond this, Swift has a strong emphasis on types with value semantics, which are safe
to transfer across concurrent boundaries. Except for classes, Swift’s mechanisms for type
composition provide value semantics when their elements do. This includes generic structs, as
well as its core collections: for example, Dictionary<Int, String> can be directly shared
across actor boundaries. Swift’s Copy on Write approach means that collections can be
transferred without proactive data copying of their representations -- an extremely powerful fact
that I believe will make the Swift actor model more efficient than other systems in practice.

However, everything isn’t simple here: the core collections can not be safely transferred across
actor boundaries when they contain general class references, unsafe pointers, and other
non-value types. We need a way to differentiate between the cases that are safe to transfer and
those that are not.

https://github.com/DougGregor/swift-evolution/blob/actors/proposals/nnnn-actors.md#actor-isolation
https://en.wikipedia.org/wiki/Value_semantics

Value Semantic Composition
Structs, enums and tuples are the primary mode for composition of values in Swift. These are all
safe to transfer across actors -- if the data they contain is safe to transfer.

Immutable Classes
One common and efficient design pattern in concurrent programming is to build immutable data
structures - it is perfectly safe to transfer a reference to a class between actors if the state within
it never mutates. This design pattern is extremely efficient (because no synchronization -
beyond ARC for the refcount) is required, can be used to build advanced data structures, and is
widely explored by the pure-functional language community.

Internally Synchronized Reference Types
A common design pattern in concurrent systems is for a class to provide a “thread safe” API:
they protect their state with explicit synchronization (mutexes, atomics, etc). Because the public
API to the class is safe to use from multiple actors, the reference to the class can be directly
transferred between actors safely.

Actor references themselves are an example of this: they are safe to pass between actors by
passing a pointer, since the mutable state within an actor is implicitly protected by the actor
queue.

“Transferring” Objects Between Actors
A fairly common pattern in concurrent systems is for one actor/thread to build up a data
structure containing unsynchronized mutable state, then “hand it off” to a different actor to use
by transferring the raw pointer. This is correct without synchronization if (and only if) the sending
actor stops using the data that it built up - the result is that only one actor dynamically accesses
the mutable state at a time.

There are both safe and unsafe ways to achieve this, e.g. see the discussion about “exotic” type
systems in the “Alternatives Considered” section at the end.

Deep Copying Classes
One safe way to transfer reference types is to make a deep copy of the data structures,
ensuring that the source and destination actor each have their own copy of mutable state. This
can be expensive for large structures, but is/was commonly used in some Objective-C
frameworks. General consensus is that this should be explicit, not something implicit in the
definition of a type.

https://en.wikipedia.org/wiki/Persistent_data_structure

Motivation Conclusion
This is just a sampling of patterns, but as we can see, there are a wide range of different
concurrent design patterns in widespread use. The design center of Swift around value types
and encouraging use of structs is a very powerful and useful starting point, but we need to be
able to reason about the complex cases as well - both for communities that want to be able
express high performance APIs for a given domain but also because we need to work with
legacy code that won’t get rewritten overnight.

As such, it is important to consider approaches that allow library authors to express the intent of
their types, it is important for app programmers to be able to work with uncooperative libraries
retroactively, and it is important that we provide safety as well as unsafe escape hatches so we
can all just “get stuff done” in the face of an imperfect world that is in a process of transition.

Finally, our goal is for Swift (in general and in this specific case) is to be a highly principled
system that is sound and easy to use. In 20 years, many new libraries will be built for Swift and
its ultimate concurrency model. These libraries will be built around value semantic types, but
should also allow expert programmers to deploy state of the art techniques like lock-free
algorithms, use immutable types, or whatever other design pattern makes sense for their
domain. We want users of these APIs to not have to care how they are implemented internally.

Proposed Solution + Detailed Design
The high level design of this proposal revolves around an ActorSendable and
ValueSemantic protocol, autosynthesized conformance to the protocol for many value types,
adoption of the ValueSemantic by standard library types.

Beyond the basic proposal, in the future we would like to add support for closures, a set of
simple adapter types to handle legacy compatibility cases, and first class support for
Objective-C frameworks. These are described in the following section.

ActorSendable Protocol
The core of this proposal is the ActorSendable marker protocol defined in the Swift standard
library:

protocol ActorSendable {}

The compiler rejects any attempts to pass data between actors when the argument or result
does not conform to the ActorSendable protocol:

actor class SomeActor {

 // async functions are usable *within* the actor, so this
 // is ok.
 func doThing(string: NSMutableString) async {...}
}

// ... but they cannot be called by other actors or other code:
func f(a: SomeActor, myString: NSMutableString) async {
 // error: ‘NSMutableString’ may not be passed across actors;
 // it does not conform to ‘ActorSendable’
 await a.doThing(string: myString)
}

The ActorSendable protocol models types that are allowed to be safely passed across actor
boundaries by copying the value. This includes value semantic types, references to immutable
reference types, internally synchronized reference types, and potentially other future type
system extensions for unique ownership etc.

Note that incorrect conformance to this protocol can introduce bugs in your program (just as an
incorrect implementation of Hashable can break invariants). For example, it would be incorrect
(and very unwise!) to add to your codebase, because it results in a shared reference to mutable
state:

extension NSMutableString : ActorSendable {}

While this is a possible bug, Swift doesn’t define away all classes of bugs, and this is a relatively
obscure thing to do. Allowing reference types to conform to this protocol is essential to allow
advanced types to work nicely with the actor system, e.g. those that are internally synchronized
or immutable by definition.

ValueSemantic Protocol
While we need the ability for experts to define types that are ActorSendable, the norm in
Swift is for many types to have proper value semantics. Such behavior is inherent to
aggregates of value semantic types, and there are generic algorithms that want to be
constrained to value semantic types. This is a commonly discussed and requested feature in
general for Swift.

As such, we define a ValueSemantic protocol that refines ActorSendable, since all value
semantic types can be safely passed across actor boundaries. The ValueSemantic protocol
is another marker protocol defined as:

protocol ValueSemantic : ActorSendable { }

The tricky part of the ValueSemantic protocol is defining exactly what it means and what
types are allowed to conform to it. This definition is a key subtask of the general concurrency
feature proposal, but the final definition of that is left as a separable design task. This is hard
and expert level attention is necessary here.

Tuple conformance to ActorSendable and ValueSemantic
Swift has hard coded conformances for tuples to specific protocols, and this should be extended
to ActorSendable and ValueSemantic, when the tuples elements are all ActorSendable
or ValueSemantic (respectively).

Auto-synthesized Struct/Enum ValueSemantic Conformances
Value semantic types are extremely common in Swift and aggregates of them are also correctly
value semantic. As such, the Swift compiler should implicitly auto-synthesize conformances for
non-public structs and enums that are compositions of other ValueSemantic types. It does so
by adding the marker protocol to the struct/enum when appropriate:

struct MyPerson { var name: String, age: Int }
struct MyNSPerson { var name: NSMutableString, age: Int }

actor class SomeActor {
 // Structs and tuples are ok to send and receive!
 public func doThing(x: MyPerson, y: (Int, Float)) async {..}

 // error: MyNSPerson doesn’t conform to ActorSendable due to
unsendable ‘NSMutableString’ member.
 public func doThing(x: MyNSPerson) async {..}
}

Because of this behavior, user-defined struct/enums will “just work” by default with actor
methods in a correct and easy to use way in the majority case. This also means that
structs/tuples containing NSMutableStrings and other non-ValueSemantic types will not be
ActorSendable by default which is good for memory safety.

This proposal chooses to limit this to non-public types because Swift generally wants extra
attention paid to the public APIs of types, but we could make autosynthesis happen independent
of access control, or we could make it only happen when explicitly opt’d into. (Hat tip to
Matthew Johnson for suggesting this).

https://forums.swift.org/t/valuesemantic-protocol/41686/
https://github.com/apple/swift-evolution/blob/main/proposals/0283-tuples-are-equatable-comparable-hashable.md

This approach follows the precedent of SE-0185, SE-0266, and SE-0283, but chooses to make
the conformance to ValueSemantic implicit. An alternative design would follow those
proposals more closely and require an explicit “: ValueSemantic” on the definition of
MyPerson. Please see “Alternatives Considered” at the end of this proposal for more
discussion about this.

Adoption of ValueSemantic by Standard Library Types
While normal user-defined value types will not have to interact with ActorSendable or
ValueSemantic directly, the standard library is the bottom of the pile of turtles and is defined
in terms of more complex things like builtin LLVM types. As such, standard library types like
Int and String need to conform to ValueSemantic explicitly.

These value semantic types need to conform by adopting the marker protocol:

extension Int : ValueSemantic {}
extension String : ValueSemantic {}
// … etc.

Similarly, conditional conformances for various collection and optional types can be defined
naturally:

extension Array : ValueSemantic where Element : ValueSemantic {}

Beyond actors, such conformances are important for generic algorithms that want to be
constrained to value semantic types.

All actors references are themselves ActorSendable, so they can implicitly conform to
ActorSendable or perhaps it is best for the proposed Actor protocol to conform.

Note that UnsafeMutablePointer and UnsafeBufferPointer are highly debatable - the
value semantic proposal should define whether it is correct for them to be marked as
ValueSemantic or not.

A nice aspect of this proposal is that it directly composes with the existing Swift generics system
and builds on the existing modeling power of the Swift type system. No new fancy type system
machinery is required.

https://github.com/apple/swift-evolution/blob/main/proposals/0185-synthesize-equatable-hashable.md
https://github.com/apple/swift-evolution/blob/main/proposals/0266-synthesized-comparable-for-enumerations.md
https://github.com/apple/swift-evolution/blob/main/proposals/0283-tuples-are-equatable-comparable-hashable.md

Future Work / Follow-on Projects
In addition to the base proposal, there are several follow-on things that should be explored once
this proposal converges, to really fill out the programming model here.

Introduce an @actorSendable attribute for closures
There are many useful reasons why you’d want to send bits of computation between actors in
the form of a closure, and some cases which are obviously safe to do so (e.g. closures that
don’t capture anything). Going further, the ActorSendable protocol and its formalism allows
us to allow captures to be transferred between actors as well -- so long as the captured values
are ActorSendable. This could possibly be extended to ValueSemantic and
@valueSemantic if there was a need.

What we would really like to say is that a specific class of closures are ActorSendable - and
that kind of closure needs to be demarcated as part of its type. This would spelled as an
attribute, allowing something like this to work:

actor class MyContactList {
 func filteredElements(_ fn: @actorSendable (ContactElement) -> Bool)
async -> [ContactElement] { … }
}

Which could then be used like so:

// Closures with no captures are ok!
list = await contactList.filteredElements { $0.firstName != “Max” }
// Capturing a ‘searchName’ string is ok, because it is ActorSendable.
list = await contactList.filteredElements { $0.firstName==searchName }
// @actorSendable is part of the type, so passing a compatible
// function works as well.
list = await contactList.filteredElements(dynamicPredicate)

Unfortunately, Swift doesn’t currently allow non-nominal types like functions to conform to
protocols, but recently added some hard coded conformances for tuples. Such a thing could be
added for functions and ActorSendable as well.

One question to decide is how to handle “var” captures - normally closures capture them
by-reference, which isn’t what we want here. We could either reject the second example above
and require:

https://github.com/apple/swift-evolution/blob/main/proposals/0283-tuples-are-equatable-comparable-hashable.md

list = await contactList.filteredElements {
 [searchName] in $0.firstName == searchName
}

Or we could make by-copy capture be implicit for @actorSendable closures. Hat tip to cukr
for pointing this out.

Adaptor Types for Legacy Codebases
NOTE: This section is not considered part of the proposal - it is included just to illustrate aspects
of the design.

The proposal above provides good support for simple composition and Swift types that are
updated to support Actors. Further, Swift’s support for retroactive conformance of protocols
makes it possible for users to work with codebases that haven’t been updated yet.

However, there is an additional important aspect of compatibility with existing frameworks that is
important to confront: frameworks are sometimes designed around dense graphs of mutable
objects with ad hoc structures. While it would be nice to “rewrite the world” eventually, practical
Swift programmers will need support to “get things done” in the meantime. By analogy, when
Swift first came out, most Objective-C frameworks were not audited for nullability. We
introduced “ImplicitlyUnwrappedOptional” to handle the transition period, which
gracefully faded from use over the years.

To illustrate how we can do this with actors, consider a pattern that is common in Objective-C
frameworks: passing an object graph across threads by “transferring” the reference across
threads - this is useful but not safe! Programmers will want to be able to express these things
as part of their actor APIs within their apps.

This can be achieved by the introduction of a generic helper struct:

@propertyWrapper
struct UnsafeTransfer<T: AnyObject> : ActorSendable {
 var wrappedValue: T
 init(wrappedValue: Wrapped) {
 self.wrappedValue = wrappedValue
 }
}

For example, let’s assume that NSMutableDictionary isn’t updated to know about
ActorSendable (just to have a concrete example of an existing type that we want to work

https://forums.swift.org/t/pitch-2-protocol-based-actor-isolation/42123/2
https://forums.swift.org/t/pitch-2-protocol-based-actor-isolation/42123/2

with). The struct above would allow you (as an app programmer) to write actor APIs in your
application like this:

actor class MyAppActor {
 // The caller *promises* that it won’t use the transferred object.
 public func doStuff(dict: UnsafeTransfer<NSMutableDictionary>) async
}

While this isn’t particularly pretty, it is effective at getting things done on the caller side when you
need to work with unaudited and unsafe code. This can also be sugared into a parameter
attribute using the recently proposed extension to property wrappers for arguments, allowing a
prettier declaration and caller-side syntax:

actor class MyAppActor {
 // The caller *promises* that it won’t use the transferred object.
 public func doStuff(@UnsafeTransfer dict: NSMutableDictionary) async
}

Objective-C Framework Support
Objective-C has established patterns that would make sense to pull into this framework
en-masse, e.g. the NSCopying protocol is one important and widely adopted protocol that
should be onboarded into this framework.

General consensus is that it is important to make copies explicit in the model, so we can
implement an NSCopied helper like so:

@propertyWrapper
struct NSCopied<Wrapped: NSCopying>: ActorSendable {
 let wrappedValue: Wrapped

 init(wrappedValue: Wrapped) {
 self.wrappedValue = wrappedValue.copy() as! Wrapped
 }
}

This would allow individual arguments and results of actor methods to opt-into a copy like this:

actor class MyAppActor {
 // The string is implicitly copied each time you invoke this.

https://forums.swift.org/t/pitch-2-extend-property-wrappers-to-function-and-closure-parameters/40959
https://developer.apple.com/documentation/foundation/nscopying

 public func lookup(@NSCopied name: NSString) -> Int async
}

One random note: the Objective-C static type system is not very helpful to us with immutability
here: statically typed NSString’s may actually be dynamically NSMutableString’s due to
their subclass relationships. Because of this, it isn’t safe to assume that values of NSString
type are dynamically immutable -- they should be implemented to invoke the copy() method.

Various sugar
There are many possible ways to add sugar to parts of this proposal. This section captures
some of them, but they can be implemented locally in downstream packages, are debatable,
and such debate would detract from the core proposal. I think it is really important to split them
out to follow-on proposals if others are interested in pursuing them.

Matthew Johnson points out that most value semantic types already conform to Equatable
and usually Hashable. Explicit conformance could be made more convenient if we introduced a
couple typealiases:

typealias EquatableValue = Equatable & ValueSemantic
typealias HashableValue = Hashable & ValueSemantic

Source Compatibility
This is fully source compatible with existing code bases - it is a purely additive proposal.
Furthermore, by including this in “Actors 1.0,” it eliminates a major source break in “Actors 2.0”
that would be required to lock down on what is passed across actor boundaries.

Effect on API resilience
The *implicit* conformance of structs and enums to ValueSemantic has a subtle impact on
resilience: adding a non-ValueSemantic member to a struct will break the struct’s
conformance to ValueSemantic, and the implicit nature of this conformance may make it
difficult to detect. For this reason, we may choose to make ValueSemantic a required
annotation on a struct (see alternatives considered below).

Alternatives Considered
There are several alternatives that make sense to discuss w.r.t. this proposal. Here we capture
some of the bigger ones.

https://forums.swift.org/t/pitch-2-protocol-based-actor-isolation/42123/9

Make ValueSemantic and ActorSendable explicitly unsafe
One disadvantage of this proposal is that manually conforming a reference type to
ValueSemantic is an unchecked unsafe operation:

// This conformance is incorrect!
class Box : ValueSemantic {
 var x : Int
}

Swift typically handles this by requiring the word “Unsafe” to be uttered when performing unsafe
operations. We could handle this in a couple of ways, e.g. by putting the word Unsafe into the
protocol name:

// I know what I’m doing!
class Thing : UnsafeValueSemantic {...}

The problem with this approach is that the ValueSemantic protocol is also extremely useful as
a generic constraint, and its use there is perfectly safe -- it is really just the conformance that is
unsafe.

If this is an important problem to solve, we could require a new @unsafe attribute in the
conformance list:

// error: conforming a class to ValueSemantic is an unsafe operation
class Thing1 : ValueSemantic {...}

// Ok
class Thing2 : @unsafe ValueSemantic {...}

There are two ways we could achieve this: the quick and dirty approach would be to special
case the ValueSemantic and ActorSendable protocols in the conformance checker.

A more general way to go would be to introduce a new @unsafeConformance attribute that
could be applied to any protocol to enable this behavior:

@unsafeConformance
protocol ActorSendable {}

This would make “unsafe conformance” a more general part of the language. I’m not sure if
unsafe conformances come up in other domains, but if so, a general solution like this would be
nice.

Explicit struct/enum Conformance to ValueSemantic
The proposal suggests that structs and enums should conform to ValueSemantic any time all of
their members conform. Another approach is to follow the prior art in autosynthesized Swift
protocols more closely and require an explicit conformance for the struct:

struct MyPerson2 : ValueSemantic {
 var name: String, age: Int
}
actor class SomeActor {
 // error: MyPerson (above) doesn’t conform to ActorSendable!
 public func doThing(x: MyPerson) async {..}

 // Ok, explicitly conforms.
 public func doThing(x: MyPerson2) async {..}
}

Both models work fine, here are some tradeoffs I see:

●​ The “: ValueSemantic” marker is mostly boilerplate.
●​ The conformance does induce some minor code bloat implicitly.
●​ Explicit conformances would give you a compiler error eagerly if you define a struct with

non-sendable things and try to make it implicitly sendable. With implicit conformances
you only get the error when trying to send it in an actor method.

●​ Implicit conformances have a minor resilience issue mentioned above.
●​ Explicit conformances are more consistent with Hashable and Equatable, and

consistency is good.
●​ It is easier to start out with explicit conformance and later switch to implicit conformance

(without breaking source compatibility) than the other way around.
●​ Not all struct/enum compositions of value semantic types are themselves value semantic

(examples), so we might need a way to disable autosynthesis, making the proposal more
complicated.

●​ While the “only implicit for non-public types” rules is intended to be a pragmatic
concession, I would expect it to lead to questions like “Why does making my type public
cause my build to break?” on stack overflow?

It isn’t obvious how common “user defined types passed across actor boundaries” will be.
Overall, if the boilerplate issue is acceptable then it seems better to make this explicit.

https://forums.swift.org/t/pitch-protocol-based-actor-isolation/41677/7
https://forums.swift.org/t/pitch-2-protocol-based-actor-isolation/42123/6

Codable conforming to ValueSemantic
Not proposed, but it would be perfectly possible to make all Codable types conform to
ValueSemantic. This would implement a deep copy by coding and then decoding the value.
While this would be semantically correct, this would be a significant and surprising performance
impact for some types, it seems better to have library authors implement native support and
produce a compiler error in the meantime.

Exotic Type System Features
The Swift Concurrency Roadmap mentions that a future iteration of the feature set could
introduce new type system features like “mutableIfUnique” classes, and it is easy to imagine
that move semantics and unique ownership could get introduced into Swift someday.

While it is hard to evaluate future proposals without all the details, such features should
compose very naturally with this design: we can either make those types conform to
ActorSendable, or we could change the check in the compiler itself to allow both
ActorSendable and <novel type system feature> types as arguments and results.

Unique Pointers

Some languages (C++, Rust, etc) have unique pointer types, and it might seem appealing to try
to allow transferring unique pointers directly across actor boundaries. However, this is only safe
if the system prevents formation of interior pointers.

For example, a hypothetical system that allowed unique references could permit something like
this:

unique class C1 { let subReference: C2 }
class C2 { var mutableState : Int }

It is not safe in general to allow pointer transfers of “C1” references across actors - even though
the reference to C1 is unique, the sending actor could have other references to the underlying
C2 object. As such, sound type systems that attempt to achieve this end up needing to tightly
constrain the design space around unique references.

Unique references also cannot directly model DAGs and other common structures.

Synthesize conformances for ActorSendable
This proposal provides great support for types with value semantics (including immutable
reference types), while allowing more advanced types like concurrent hash tables to be passed

https://forums.swift.org/t/swift-concurrency-roadmap/41611

as actor arguments and results seamlessly by conforming to ActorSendable. However, this
proposal does not make compositions of ActorSendable types as elegant to use as
compositions of ValueSemantic types.

One alternative is to extend autosynthesis and tuple conformances to aggregates of “merely
ActorSendable” types. If we went with this direction, we should also add more conditional
conformances for standard library collections as well, e.g.:

extension Array : ActorSendable where Element : ActorSendable {}

This is a decision made with the goal of reducing complexity of the proposal, guided by the idea
that internally synchronized types are important to support, but probably not important to sugar.
This sugar isn’t likely to be used, and if it is more important than currently expected, it can
always be added incrementally in the future.

Support an implicit copy hook
The first revision of this proposal allowed types to define custom behavior when they are sent
across actor boundaries, through the implementation of an unsafeSendToActor protocol
requirement. This increased the complexity of the proposal, admitted undesired functionality
(implicit copy behavior) and made the recursive aggregate case more expensive and would
result in larger code size.

Do Not Enforce Transfers in “Actors 1.0”
The current proposal for the actor system suggests that we launch “Actors 1.0” without any
enforcement of cross-actor value transfers, but then introduce an “Actors 2.0” system sometime
later that locks down on this (presumably with new exotic type system features available). It
suggests introducing an “actorlocal” concept and attributes to opt types out of actor
isolation. One could imagine that “Actors 2.0” would ship a year or more after “Actors 1.0” and,
therefore, that a significant amount of user and library code will be written against “Actors 1.0”.

That approach has several downsides compared to this proposal:

1)​ None of the “Actor 1.0” code will be memory safe - which is the primary stated goal of
the actor model. We will have introduced a new Swift concurrency model that is
extremely unsafe. People will form first impressions about it, and many bugs will be had.

2)​ The proposed type system extensions are not very expressive, certainly not to all of the
cases covered by this proposal, so some code may not be able to migrate to Actors 2.0.

3)​ “Actors 2.0” will be extremely incompatible with “Actors 1.0” and will put the Swift
community through a very difficult and unnecessary migration.

https://docs.google.com/document/d/1OMHZKWq2dego5mXQtWt1fm-yMca2qeOdCl8YlBG1uwg/edit#
https://forums.swift.org/t/concurrency-actors-actor-isolation/41613/

Furthermore, the proposed actorlocal feature is effectively the same thing as
ActorSendable, but with a different sense and implemented as a language feature instead of
a library feature. It has a profound impact on the entire type system - because it isn’t a protocol,
the generics system needs to be significantly extended to propagate and support the bit. We
would need the equivalent of conditional and retroactive conformance for the bit, etc. The
additional attributes also complicate the Swift language, both its implementation and its user
experience.

Conclusion
This proposal defines a very simple approach for making data transfers safe across actors. It
requires minimal compiler/language support (just the ValueSemantic synthesis behavior), is
extensible by users, works with legacy code bases, and provides a simple model that we can
feel good about even 20 years from now.

Because the feature is almost entirely a library feature that builds on existing language support,
it is easy to define wrapper types that extend it for domain specific concerns (along the lines of
the NSCopied example above), and retroactive conformance makes it easy for users to work
with older libraries that haven’t been updated to know about actors yet.

I would highly recommend that we include this proposal (or something like it) in the “Actors 1.0”
definition and launch.

	NOTE: This proposal has been superseded
	Protocol-based Actor Isolation: Draft #2
	Introduction
	Motivation
	💖 Swift + Value Semantics
	Value Semantic Composition
	Immutable Classes
	Internally Synchronized Reference Types
	“Transferring” Objects Between Actors
	Deep Copying Classes
	Motivation Conclusion

	Proposed Solution + Detailed Design
	ActorSendable Protocol
	ValueSemantic Protocol
	Tuple conformance to ActorSendable and ValueSemantic
	Auto-synthesized Struct/Enum ValueSemantic Conformances
	Adoption of ValueSemantic by Standard Library Types

	Future Work / Follow-on Projects
	Introduce an @actorSendable attribute for closures
	Adaptor Types for Legacy Codebases
	Objective-C Framework Support
	Various sugar

	Source Compatibility
	Effect on API resilience
	Alternatives Considered
	Make ValueSemantic and ActorSendable explicitly unsafe
	Explicit struct/enum Conformance to ValueSemantic
	Codable conforming to ValueSemantic
	Exotic Type System Features
	Synthesize conformances for ActorSendable
	Support an implicit copy hook
	Do Not Enforce Transfers in “Actors 1.0”

	Conclusion

