Modelling

 $Value\ of\ credit\ risky\ derivative\ =\ Value\ of\ credit\ riskless\ derivative\ +\ counterparty\ credit\ risk\ adjustmen$

This can be written as

$$\underline{\mathsf{Eq}(1)} \ \hat{A}(t, S_t, J_t^B, J_t^C) \ = \ A(t, S_t) \ + \ U(t, S_t, J_t^B, J_t^C)$$

where

$$J_t^B, J_t^C \in \{0, 1\}$$
 are jump processes

Also, we assume

The risk free bond P accrues at the riskless rate r $dP_t/P_t = r_t dt$ The bank's risky zero-recovery bond P^B accrues at rate r^B $dP_t^B/P_t^B = r_t^B dt - dJ_t^B$ Counterparty's risky 0-recovery bond P^B accrues at rate r^C $dP_t^B/P_t^B = r_t^B dt - dJ_t^B$ The asset S drifts with P and diffuses with volatility P dS = P and P accrues at rate P accrues P accrues at rate P accrues P ac

We also assume that $dW_{t} = dJ_{t}^{B} \& dJ_{t}^{C}$ are independent

Equation (1) has the following boundary conditions:

- 1. $\hat{A}(t, S_t, 0, 1) = R_c \max(A(t, S_t), 0) + \min(A(t, S_t), 0)$ This boundary condition states that if the counterparty defaults $(J_t^B = 0, J_t^C = 1)$ with recovery rate R_c then the bank receives either nothing or R_c times the value of the asset at time t
- 2. $\hat{A}(t, S_t, 1, 0) = R_c \min(A(t, S_t), 0) + \max(A(t, S_t), 0)$ Here, it states that if the bank default then the bank pays the full value of the asset
- 3. $\hat{A}(T, S_T, 1, 0) = A(T, S)$ The payoff at expiry

A hedged self financing portfolio can be represented as

$$\Pi_{t} = \Delta_{t} S_{t} + \alpha_{t} P_{t}^{B} + \beta_{t} P_{t}^{C} + \chi_{t} = -\hat{A}_{t}$$

In the above hedged portfolio, the proceeds of the risky derivative are reinvested into

- a hedge amount for the asset $\Delta_t S_t$
- the bank's own bond $\alpha_t P_t^B$
- the counterparty's bond $\beta_t P_t^C$
- cash χ_t

The change in the portfolio is given by

$$\underline{Eq(2)} \quad d\Pi \quad _{t} = \Delta_{t} dS_{t} + \alpha_{t} dP_{t}^{B} + \beta_{t} dP_{t}^{C} + d\chi_{t} = -d\hat{A}_{t}$$

Assuming that the cash can be rebalanced between the three assets or funded at the rate r^F

$$d\chi_{t} = d\chi_{t}^{S} + d\chi_{t}^{F} + d\chi_{t}^{C}$$

where

$$d\chi_t^S = \Delta_t(c_t - q_t) S_t dt$$

c is the income or dividend from the asset and q if the funding cost

$$d\chi_t^{\ C} = - \beta_t r_t P_t^{\ C} dt$$

assumed to be financed at repo rate and accrue at riskless rate

$$d\chi_t^F = [r_t \max(-\hat{A}_t - \alpha_t P_t^B, 0) + r_t^F \min(-\hat{A}_t - \alpha_t P_t^B, 0)] dt$$

if positive then funded at riskless rate, if negative then funded at funding rate

From Itô's formula for jump diffusion, we get

Ea(3)

$$d\hat{A}_{t} = \left(\frac{\partial \hat{A}_{t}}{\partial t} + \frac{1}{2}\sigma_{t}^{2}S_{t}^{2}\frac{\partial^{2}\hat{A}_{t}}{\partial S_{t}^{2}}\right)dt + \frac{\partial \hat{A}_{t}}{\partial S_{t}}dS_{t} + dJ^{B}\left[\hat{A}_{t}(1,0) - \hat{A}_{t}(0,0)\right] + dJ^{C}\left[\hat{A}_{t}(0,1) - \hat{A}_{t}(0,0)\right]$$

Black Scholes Equation

change in value if bank defaults

change in value if counterparty defaults

Set the hedges in Eq(2) as follows

$$\begin{split} & \Delta_{t} = - \partial \hat{A}_{t} / \partial S_{t} \\ & \alpha_{t} = [\hat{A}_{t}(1,0) - \hat{A}_{t}(0,0)] / P_{t}^{B} \\ & \beta_{t} = [\hat{A}_{t}(0,1) - \hat{A}_{t}(0,0)] / P_{t}^{C} \end{split}$$

Substituting these hedges and $\underline{Eq(3)}$ into $\underline{Eq(2)}$ we get the following Partial Differential Equation where all the stochastic factors are now cancelled

$$\frac{\partial \hat{A}_{t}}{\partial t} + \frac{1}{2}\sigma_{t}^{2}S_{t}^{2} \frac{\partial^{2}\hat{A}_{t}}{\partial S_{t}^{2}} + (q_{t} - c_{t})S_{t} \frac{\partial \hat{A}_{t}}{\partial S_{t}} - r\hat{A}_{t} = S_{t}^{F}[\hat{A}_{t} + \hat{A}_{t}(1,0) - \hat{A}_{t}(0,0)] - \lambda_{t}^{B}[\hat{A}_{t}(1,0) - \hat{A}_{t}(0,0)] - \lambda_{t}^{B}[\hat{A}_{t}(1,0) - \hat{A}_{t}(0,0)]$$

where

 $s_t^{\ F}=r_t^{\ F}-r_t$ the spread of the funding rate over the risk free rate $\lambda_t^{\ B}=r_t^{\ B}-r_t$ can be interpreted as the intensity of default of the bank as represented by the spread on the bank rate $\lambda_t^{\ C}=r_t^{\ C}-r_t$ can be interpreted as the intensity of default of the counterparty as represented by the spread on the counterparty rate

The solution to U_t in $\underline{Eq(1)}$ can be written as

$$\begin{split} U_t = & - (1 - R_B) \int\limits_t^T \lambda_u^{\ B} D_{r_u + \lambda_u^{\ B} + \lambda_u^{\ C}} (t, u) \ E^{\underline{Q}} [\max\{A(u, S_u), 0\} | t \,] du \\ & - DVA \\ & - (1 - R_C) \int\limits_t^T \lambda_u^{\ C} D_{r_u + \lambda_u^{\ B} + \lambda_u^{\ C}} (t, u) \ E^{\underline{Q}} [\max\{A(u, S_u), 0\} | t \,] du \\ & - \sum\limits_t^T S_u^{\ F} D_{r_u + \lambda_u^{\ B} + \lambda_u^{\ C}} (t, u) \ E^{\underline{Q}} [\max\{A(u, S_u), 0\} | t \,] du \end{split}$$

where

$$D_{x}(t,T) = e^{t}$$
 the risky discount factor equivalent to a default density

The above equation can be interpreted as

 $Counterparty\ Credit\ Risk\ Adjustment\ =\ DVA\ +\ CVA\ +\ FVA$