Infrastructure-Aware Task Execution / Context
Propagation
Airflow Improvement Proposal

Status: Draft

Related Proposal: B Resumable Operators for Disruption Readiness

Discussion Thread: [DISCUSS] Infrastructure-Aware Task Execution and Resumable Operators -
Proposals for Reliability-Apache Mail Archives

Vote Thread: TBD

Authors: Stefan Wang (1fannnw@gmail.com)

Created: November 11, 2024

Target Version: Airflow 3.x

Summary

This document proposes enhancing Airflow's task execution reliability by enabling
infrastructure-aware decisions during failures and terminations. It introduces Execution Context
Propagation and Infrastructure Failure Auto-Retry to help Airflow distinguish between
infrastructure issues (worker crashes, pod evictions) and application errors (user code bugs),
enabling smarter retry budgets and better operational clarity.

Key Benefits:
- Platform teams can accurately attribute failures (infrastructure vs application)
- Users' retry budgets are protected from infrastructure disruptions
- Operators can make intelligent cleanup decisions (preserve vs cancel remote jobs)
- Clear observability through listener hooks with rich failure context

Motivation

Current Behavior and Limitations

Problem 1: No Observability Context for Root Cause Analysis
When DAG runs fail, listener hooks receive only the exception object with no structured context:

@hookimpl

def on_task_instance_failed(previous_state, task_instance, error):
'error' is just the exception
No category (infrastructure vs application)

https://docs.google.com/document/u/0/d/1XPbCfuTVhyiq12tFxbyQrX_kQqrDqMo5t7M789MG4GI/edit
https://lists.apache.org/thread/g4jhd0vz71x6jm4z8p6hjv9z7rmtb3jk
https://lists.apache.org/thread/g4jhd0vz71x6jm4z8p6hjv9z7rmtb3jk
mailto:1fannnw@gmail.com

No source (executor, scheduler, worker)
No reason (pod eviction vs timeout vs O0OM)

Platform teams must manually traverse logs and task states to determine root causes.

Problem 2: Infrastructure Failures Consume User Retry Budgets
Users configure retries for application issues, but infrastructure failures silently consume them:

@task(retries=3) # "l want 3 retries for data processing job issues”
def process_data():
cleaned = clean_data(raw_data)
if not validate(cleaned):
raise DataProcessingError("Invalid data")

What actually happens:
- Try 1: DNS failure during worker init — Infrastructure
- Try 2: K8s pod evicted — Infrastructure
- Try 3: DataProcessingError in user code — Application
- Result: Failed permanently — User: "l only got 1 real retry!"

Why is it needed?

Scenario 1: The Platform Team's Operational Dashboard

User: Alex, a platform engineer monitoring 1000s of DAGs
Current Experience:
- DAG fails, listener hook gets called
- No context at all about why it failed
- Must manually check logs, examine task states, infer failure type
- Cannot reliably route alerts (infrastructure issues should page platform team, application
issues should notify data team)
With This Proposal:

@hookimpl
def on_task_instance_failed(previous_state, task_instance, error, execution_context):
if execution_context.category == StateChangeCategory.INFRASTRUCTURE:
metrics.incr("task.failed.infrastructure”,
tags={"reason": execution_context.reason})
else:
metrics.incr("task.failed.application”)

Result: Clear attribution, accurate metrics, proper alert routing.

Scenario 2: The Frustrated Data Scientist

User: Jordan, carefully configures retry budgets for transient data issues
Current Experience:

- Configures retries=5 for API rate limits and data quality checks

- Infrastructure issues (DNS failures, pod evictions) consume 3-4 retries

- Actual application error exhausts remaining retries

- Confusion: "Why did my task fail after 5 retries when | only saw 1 data quality error?"
With This Proposal:

Platform config
infrastructure_retry_budget = 5

User config (unchanged)
@task(retries=3)
def process_data():

Result:
- Infrastructure gets 5 automatic retries (invisible to user)
- User's 3 retries protected for actual application issues
- Clean UX: "Task Succeeded - Attempt 1/3" (infrastructure retries hidden)

What change do you propose to make?

Architecture Overview

The following diagram shows how Execution Context flows through the system:

Context Sources

Worker Signal Executor Detection Scheduler Detection API Action
SIGTERM/SIGKILL Pod Eviction/Worker Lost Timeout/Zombie User Clear/Mark

Context Creation

ExecutionContext
category + reason + source

Propagatign Points

on_kill Listener Hooks Retry Classification
execution_context execution_context INFRA vs APP

Smart Degisions .

Operator Cleanup Alert Routing Retry Budget
Preserve vs Cancel Platform vs App Team INFRA vs User

Part 1: Execution Context Propagation

Core Concept

Provide rich, actionable context for all task state changes. Context flows from the source of
truth (executor signals, scheduler decisions, API actions) rather than being inferred post-hoc.

Data Structure

@dataclass

class ExecutionContext:
""Context for state transitions."

category: StateChangeCategory

- INFRASTRUCTURE: worker crash, pod eviction, DB connection loss

- APPLICATION: user code exception, data validation error

- TIMEOUT: execution timeout exceeded

- USER_ACTION: manual clear/mark via UI/API

reason: StateChangeReason
- WORKER_TERMINATION (SIGTERM/SIGKILL)

- WORKER_LOST (heartbeat timeout)

- RESOURCE_EXHAUSTION (OOM, disk full)

- DB_CONNECTION_ERROR (transient DNS/network)
- EXECUTION_TIMEOUT (task timeout)

- MANUAL_CLEAR (user action)

source: ContextSource

- WORKER: signal received in task process

- EXECUTOR: executor detected issue

- SCHEDULER: timeout/zombie detection

- API: user action via UI/API

metadata: Dict[str, Any] # Executor-specific details

Propagation Points

1. Enhanced on_kill() signature:

class BaseOperator:
def on_kill(self, execution_context: ExecutionContext | None = None) -> None:
Called when the task is terminated.
Args:
execution_context: Rich context about WHY termination occurred.
Available in Airflow 3.x+. None for backward compatibility.

pass # Operators override this

2. Enhanced listener hooks:

@hookspec
def on_task_instance_failed(
previous_state: TaskIinstanceState | None,
task_instance: Tasklnstance,
error: None | str | BaseException,
execution_context: ExecutionContext | None = None, # NEW

Execute when task state changes to FAIL.

3. Context creation at source:

TI/Worker receives signal
def signal_handler(signum, frame):
context = ExecutionContext(
category=StateChangeCategory.INFRASTRUCTURE,

reason=StateChangeReason. WORKER_TERMINATION,
source=ContextSource. WORKER,
metadata={'signal’: signum}

)

task.on_kill(context)

Executor detects pod eviction (K8s)
if pod.status.reason == 'Evicted":
context = ExecutionContext(
category=StateChangeCategory.INFRASTRUCTURE,
reason=StateChangeReason. WORKER_LOST,
source=ContextSource.EXECUTOR,
metadata={'pod_reason’: 'Evicted’, 'node": pod.spec.node_name}

)

self.fail_task(ti, context)

Part 2: Infrastructure Failure Auto-Retry

Core Concept

Separate retry budgets: platform-managed retries for infrastructure failures, user-configured
retries for application errors.

Retry Flow Comparison
Current Behavior (Single Budget):

User Config Task Instance
retries=3 try_number

try_number = 1

X DNS Failure (Infrastructure)

Scheduler

try_number = 2 X User budget consumed

X Pod Evicted (Infrastructure)

try_number = 3 X User budget consumed

X DataQualityError (Application)

\

try_number = 4 (exceeds max)

X FAILED PERMANENTLY
User only got 1 real retry

User Config Task Instance
retries=3 try_number

Proposed Behavior (Separate Budgets):

Scheduler

User Config

retries=3 User try_number Infra try_number Scheduler
user=1, infra=0
€ DNS Failure (Infrastructure)
user=1, infra=1
User budget protected
X Pod Evicted (Infrastructure)
user=1, infra=2
User budget protected
X DataQualityError (Application)
user=2, infra=2
SUCCESS (Application)
SUCCESS
User sees "Attempt 2/3"
Uﬁ:{rfez'lgg User try_number Infra try_number Scheduler

Implementation
Retry Classification Logic:

def classify_for_retry(context: ExecutionContext) -> RetryType:
""Determine which retry budget to use.

if context.category == StateChangeCategory.INFRASTRUCTURE:

Retryable infrastructure issues

if context.reason in [
StateChangeReason.WORKER_TERMINATION,
StateChangeReason.WORKER_LOST,
StateChangeReason.RESOURCE_EXHAUSTION,
StateChangeReason.DB_CONNECTION_ERROR,

return RetryType.INFRASTRUCTURE

Application failures or non-retryable infrastructure
return RetryType.APPLICATION

Budget Consumption:

Infrastructure failure

if retry_type == RetryType.INFRASTRUCTURE:
ti.infrastructure_try_number += 1
ti.try_number -=1 # Auto-decrement to keep user view unchanged

Application failure
else:
ti.try_number +=1 # Normal behavior

User Experience

Current:

Logs: Try 1, Try 2, Try 3 (all visible, confusing)

Ul: "Task Failed - Attempt 3/3"

User: "Why did it fail? | saw 1 data error but used all 3 retries!"
Proposed:

User Logs: Try 1 (clean, only app retries shown)

Ul: "Task Succeeded - Attempt 1/3"

Platform Logs: "Infrastructure retry 2/5 succeeded" (separate tracking)
User: "My retry budget works as expected!"

Configuration

airflow.cfg - Platform defaults

[scheduler]

infrastructure_retry_budget = 5
infrastructure_retry_delay = 10

Per-executor tuning

[kubernetes_executor]
infrastructure_retry_budget = 7 # More volatile

Task-level override (optional)

@task(
retries=3, # User's application retries
infrastructure_retry_enabled=True, # Default: from config
infrastructure_retry_limit=7, # Override platform default

)

def process_data():
pass

What problem does it solve?

1. Smart Cleanup Decisions: Operators can distinguish temporary infrastructure issues
from timeouts, preserving expensive remote jobs when appropriate

2. Protected User Retry Budgets: Infrastructure failures don't consume user-configured
retries, eliminating user confusion

3. Clear Operational Attribution: Platform teams get accurate metrics and can route alerts
to the right teams (platform vs application)

4. Better Reliability: Automatic infrastructure retries improve overall system reliability
without user intervention

Are there any downsides to this change?

Minimal:
- Additional database column: infrastructure_try_number (INTEGER)
- Additional database column: last_failure_context (JSONB)
- Slight increase in metadata passed between components
Mitigations:
- All changes are backward compatible (new parameters optional, default to None)
- Existing operators/plugins work unchanged
- Indexes added for performance

Which users are affected by the change?

Positively Affected:
- All Users: Benefit from infrastructure auto-retry (transparent)
- DAG Authors: Can implement smarter operator cleanup logic
- Platform Teams: Get rich observability context for monitoring
- Provider Maintainers: Can build more resilient operators (Databricks, EMR, Snowflake,
etc.)
Not Affected:

- Users who don't implement execution_context logic (backward compatible)
- Existing listener plugins (context parameter is optional)

How are users affected by the change?

Database Migration

ALTER TABLE task_instance
ADD COLUMN infrastructure_try_number INTEGER DEFAULT 0 NOT NULL,
ADD COLUMN last_failure_context JSONB;

CREATE INDEX idx_ti_infrastructure_retries
ON task_instance(infrastructure_try_number)
WHERE infrastructure_try_number > 0;

Code Changes (Opt-in)

Operators (optional enhancement):

Before: no context
def on_kill(self):
self.cancel_job(self.job_id)

After: context-aware (opt-in)
def on_kill(self, execution_context=None):
if execution_context and execution_context.category == INFRASTRUCTURE:
self.preserve_job(self.job_id)
else:
self.cancel_job(self.job_id)

Listener Plugins (optional enhancement):

Before: just error
def on_task_instance_failed(previous_state, task_instance, error):
log_failure(error)

After: rich context (opt-in)
def on_task_instance_failed(previous_state, task_instance, error, execution_context=None):
if execution_context:
route_alert_by_category(execution_context.category)
log_failure(error)

What is the level of migration effort?

Zero Breaking Changes

- Default behavior unchanged (infrastructure retry opt-in via config)
- All new parameters optional with safe defaults

- Existing operators work without modification

- Existing listener plugins work without modification

Gradual Adoption Path

Phase 1: Foundation (Airflow 3.x)
- Add ExecutionContext model
- Add optional context parameters to interfaces
- Default: infrastructure retry disabled
Phase 2: Adoption (Airflow 3.x+1)
- Providers update operators to use context
- Documentation with migration examples
- Users enable infrastructure retry per-DAG or per-pool
Phase 3: Default Enabled (Airflow 3.x+2)
- Infrastructure retry enabled by default
- Monitor and tune budgets
- Full production readiness

What defines this AIP as "done"?

ExecutionContext dataclass implemented
on_kill(execution_context) signature updated in BaseOperator
Listener hooks signatures updated with execution_context parameter
Signal handlers create and propagate context

Executors create context from infrastructure signals
Infrastructure retry classification logic implemented

Separate retry budget tracking (infrastructure_try_number)
Database migrations added

9. Configuration options added to airflow.cfg

10. Documentation updated with examples

11. Metrics added (task.failed.infrastructure, task.failed.application)
12. Tests added for all retry scenarios

© NG~ wDN =

Appendix

Appendix A: Context Detection Mechanisms

Kubernetes Executor Example

def create_context_from_pod(pod: V1Pod) -> ExecutionContext:
""Leverage existing rich signals from K8s.""
if pod.status.reason == 'Evicted"
return ExecutionContext(
category=StateChangeCategory.INFRASTRUCTURE,
reason=StateChangeReason.RESOURCE_EXHAUSTION,
metadata={
'‘pod_reason'’: pod.status.reason,
'node’: pod.spec.node_name,
'container_reason': pod.status.container_statuses|0].state.terminated.reason
}
)

if pod.status.phase == 'Failed"
exit_code = pod.status.container_statuses[0].state.terminated.exit_code
if exit_code ==137: # SIGKILL
return ExecutionContext(
category=StateChangeCategory.INFRASTRUCTURE,
reason=StateChangeReason.WORKER_TERMINATION,
metadata={'exit_code" 137, 'signal’: 'SIGKILL"}

)

Transient Database Errors (All Executors)

def is_retryable_infrastructure_error(exception: BaseException) -> bool:

""Detect transient DB infrastructure errors.
if isinstance(exception, (OperationalError, DBAPIError)):

error_code = extract_db_error_code(exception)

MySQL: 2005 (DNS failure), 2013 (lost connection)

PostgreSQL: 08006 (connection failure), 08000 (connection exception)

if error_code in RETRYABLE_DB_ERROR_CODES:

return True

return False

Appendix B: Metrics
New Metrics (OTel-first):

Task failure metrics tagged by category
Stats.incr(
"task_instance.failed",
tags={
"dag_id": ti.dag_id,
"task_id": ti.task_id,
"category": execution_context.category.value, # infrastructure/application
"reason": execution_context.reason.value,

}
)

Infrastructure retry metrics
Stats.incr(
"task_instance.infrastructure_retry",
tags={
"dag_id": ti.dag_id,
"attempt": ti.infrastructure_try_number,
}
)

Appendix C: Open Questions for Community

1. Naming: Is INFRASTRUCTURE vs APPLICATION clear? Alternative: PLATFORM vs USER?

2. Default Behavior: Should infrastructure retry be opt-in or opt-out?

3. Budget Scope: Should defaults be per-executor, per-pool, or global?

4. Heuristic Detection: For signals without rich context, should we use heuristics (e.g., task
still RUNNING when SIGTERM = likely infrastructure)?

References

Airflow Source

- TaskDeferred exception
- K8s FailureDetails
- Current on_kill() signature

External References

- Flyte Error Classification
- Flyte Retry Budgets

https://github.com/apache/airflow/blob/main/airflow-core/src/airflow/exceptions.py#L394-L441
https://github.com/apache/airflow/blob/main/providers/cncf/kubernetes/src/airflow/providers/cncf/kubernetes/executors/kubernetes_executor_types.py#L31-L42
https://github.com/apache/airflow/blob/main/task-sdk/src/airflow/sdk/bases/operator.py#L1414
https://github.com/flyteorg/flyte/blob/master/flyteidl/protos/flyteidl/core/execution.proto#L72-L77
https://github.com/flyteorg/flytepropeller/blob/master/pkg/controller/nodes/executor.go#L821-L839

	Infrastructure-Aware Task Execution / Context Propagation
	Summary
	Motivation
	Current Behavior and Limitations

	Why is it needed?
	Scenario 1: The Platform Team's Operational Dashboard
	Scenario 2: The Frustrated Data Scientist

	What change do you propose to make?
	Architecture Overview
	Part 1: Execution Context Propagation
	Core Concept
	Data Structure
	Propagation Points

	Part 2: Infrastructure Failure Auto-Retry
	Core Concept
	Retry Flow Comparison
	User Experience
	Configuration

	What problem does it solve?
	Are there any downsides to this change?
	Which users are affected by the change?
	How are users affected by the change?
	Database Migration
	Code Changes (Opt-in)

	What is the level of migration effort?
	Zero Breaking Changes
	Gradual Adoption Path

	What defines this AIP as "done"?
	Appendix
	Appendix A: Context Detection Mechanisms
	Kubernetes Executor Example
	Transient Database Errors (All Executors)

	Appendix B: Metrics
	Appendix C: Open Questions for Community

	References
	Airflow Source
	External References

