

Angles et parallèles

Plan de travail - Les corrections

POUR COMMENCER

Exercice 21 p.266:

 \widehat{xAv} et \widehat{uAy} sont opposés par le sommet, donc de même mesure. Donc \widehat{xAv} = 130°

$$\overrightarrow{xAy}$$
 est un angle plat, donc $\overrightarrow{vAy} = 180 - \overrightarrow{xAv} = 180 - 130 = 50^{\circ}$

 \widehat{xAu} et \widehat{vAy} sont opposés par le sommet, donc de même mesure. Donc \widehat{xAu} = 50°

 \widehat{xAu} et \widehat{zBu} sont deux angles correspondants, comme (xy) et (zt) sont parallèles, $\widehat{xAu} = \widehat{zBu} = 50^{\circ}$

 \widehat{yAu} et \widehat{vBz} sont alternes-internes, comme (xy) et (zt) sont parallèles, $\widehat{yAu} = \widehat{vBy} = 130^\circ$

zBu et vBt sont opposés par le sommet, donc de même mesure. Donc vBt = 50°

 \widehat{zBv} et \widehat{uBt} sont opposés par le sommet, donc de même mesure. Donc \widehat{xAu} = 130°

Exercice 27 p.267:

- **a.** On sait que $\widehat{CAB} + \widehat{BAI} = 130^{\circ}$, donc $\widehat{BAI} = 130 90 = 40^{\circ}$ (car $\widehat{CAB} = 90^{\circ}$).
- b. Non, elles ne sont pas parallèles.

En effet, les angles BAI et ABC sont alternes-internes (en considérant (AB) sécantes à (AI) et (BC)).

Si les droites (AI) et (BC) étaient parallèles, alors les angles \widehat{BAI} et \widehat{ABC} seraient de même mesure.

Exercice 32 p.267:

a. La somme des mesures dans angles d'un triangle est égale à 180°.

Donc
$$\widehat{ABC} + \widehat{BCA} + \widehat{CAB} = 180$$
, soit $\widehat{ABC} + 80 + 70 = 180^{\circ}$, soit $\widehat{ABC} + 150 = 180$.

Donc
$$\widehat{ABC} = 180 - 150 = 30^{\circ}$$

b. Comme A, B et D sont alignés, $\widehat{DAB} = 180$, or $\widehat{DAB} = \widehat{CAD} + \widehat{CAB}$

Donc
$$\widehat{CAD} + 70 = 180$$
. D'où $\widehat{CAD} = 180 - 70 = 110^{\circ}$.

c. La somme des mesures dans angles d'un triangle est égale à 180°.

Donc
$$\widehat{ADC} + \widehat{CAD} + \widehat{DCA} = 180$$
, soit $\widehat{ADC} + 110 + 50 = 180^\circ$, soit $\widehat{ADC} + 160 = 180$.

Donc
$$\overrightarrow{ABC} = 180 - 160 = 20^{\circ}$$

Exercice 40 p.268:

a. On sait que les droites (SG) et (BC) sont parallèles et que les angles \widehat{EBz} et \widehat{BEG} sont alterne-internes.

Donc
$$\widehat{EBz} = \widehat{BEG} = 140^{\circ}$$
.

b. L'angle $\widehat{bBC} = 180^{\circ}$ car c'est un angle plat.

Donc
$$\widehat{EBz} + \widehat{EBC} = 180^{\circ}$$
.

Donc $140 + \widehat{EBC} = 180$. Ainsi $\widehat{EBC} = 180 - 140 = 40^{\circ}$.

c. On sait que les angles \widehat{EBC} et \widehat{GCF} sont correspondants (en considérant la sécantes (BF) aux droites (CG) et (BE)).

Or $\widehat{EBC} = \widehat{GCF} = 40^{\circ}$. Donc les droites (CG) et (BE) sont parallèles.

Donc les rue (CG) et de l'Hypoténuse seront bien parallèles.

Exercice 46 p.269:

Comme E, B, C et D sont alignés, on en déduit que $\widehat{EBC} = \widehat{BCD} = 180^{\circ}$.

Ainsi
$$\widehat{ABC} = 180 - \widehat{ABE} = 180 - 115 = 65^{\circ}$$
 et $\widehat{ACB} = 180 - \widehat{ACD} = 180 - 128 = 52^{\circ}$.

La somme des mesures d'un triangle est égale à 180° , donc $\widehat{BAC} + \widehat{ABC} + \widehat{ACB} = 180^{\circ}$

C'est-à-dire
$$\widehat{BAC}$$
 + 65 + 52 = 180, soit \widehat{BAC} + 117 = 180.

Donc
$$\widehat{BAC} = 180 - 117 = 63^{\circ}$$
.

Exercice 47 p.269 :

a. La somme des mesures d'un triangle est égale à 180° , donc $\widehat{MNP} + \widehat{NMP} + \widehat{MPN} = 180$ C'est-à-dire $\widehat{MNP} + 50 + 30 = 180$, soit $\widehat{MNP} + 80 = 180$.

Donc $\widehat{MNP} = 180 - 80 = 100^{\circ}$.

b. On sait que ANP est un triangle isocèle rectangle, donc ses angles aigus mesurent 45°.

De plus, $\widehat{ANM} = \widehat{MNP} - \widehat{ANP} = 100 - 45 = 55^{\circ}$.

c. On a $\widehat{APM} = \widehat{APN} - \widehat{NPM} = 45 - 30 = 15^{\circ}$.

POUR APPROFONDIR

Exercice 52 p.269:

a. La somme des mesures des angles aigus d'un triangle rectangle est égale à 90°.

$$Donc \widehat{ACB} = 90 - \widehat{ABC} = 90 - 49 = 41^{\circ}$$

La somme des mesures des angles d'un triangle est égale à 180°.

Donc
$$\widehat{EDF} = 180 - (\widehat{DEF} + \widehat{EFD}) = 180 - (20 + 21) = 180 - 41 = 139^{\circ}$$
.

b. Si A, C et F sont alignés, alors l'angle \widehat{ACF} mesure 180°.

$$\widehat{ACF} = \widehat{ACB} + \widehat{EDF} = 41 + 139 = 180$$
. Les ponts A, C et F sont donc alignés.

Exercice 71 p.273:

1. a. b. Comme ABC est isocèle en A, $\widehat{ABC} = \widehat{ACB}$.

La somme des mesures des angles d'un triangle est égale à 180°,

$$\operatorname{donc} \widehat{ABC} + \widehat{ACB} = 180 - \widehat{BAC} = 180 - 70 = 110^{\circ}$$

Ainsi
$$\widehat{ABC} = \widehat{ACB} = \frac{110}{2} = 55^{\circ}$$
.

c. d. On sait que $\widehat{BAE} + \widehat{BAC} + \widehat{CAE} = 360^{\circ}$.

Ainsi,
$$\widehat{BAE} + \widehat{CAE} = 180 - \widehat{BAC} = 360 - 70 = 290^{\circ}$$
.

Comme (AE) est un axe de symétrie du drapeau, on a par ailleurs $\widehat{BAE} = \widehat{CAE}$.

Donc
$$\widehat{BAE} = \widehat{CAE} = \frac{290}{2} = 145^{\circ}$$
.

2. Voir la copie de l'élève.

Exercice 76 p.273:

a. ABE est un triangle isocèle en A donc $\widehat{ABE} = \widehat{AEB}$.

La somme des mesures des angles d'un triangle est égale à 180°,

$$\operatorname{donc} \widehat{ABE} + \widehat{AEB} = 180 - \widehat{BAE} = 180 - 108 = 72^{\circ}.$$

Donc
$$\widehat{ABE} = \frac{72}{2} = 36^{\circ}$$
.

b. BEC est un triangle isocèle en E, donc $\widehat{CBE} = \widehat{BCE}$.

La somme des mesures des angles d'un triangle est égale à 180°,

$$\operatorname{donc}\widehat{\mathit{BEC}} = 180 - (\widehat{\mathit{CBE}} + \widehat{\mathit{BCE}})$$

Or $\widehat{CBE} = \widehat{BCE} = 72^{\circ}$ car comme ABCDE est un pentagone régulier, $\widehat{ABE} = \widehat{CBE}$.

Donc
$$\widehat{BEC} = 180 - (72 + 72) = 180 - 144 = 36^{\circ}$$
.

c. Un cinquième de l'angle plat : $\frac{180}{5} = 36^{\circ}$.

Pour le triangle ABE : il est isocèle en A et l'angle \widehat{ABE} mesure 36°, donc c'est un triangle d'or.

Pour le triangle CED : il est égal au triangle ABE. En effet, CD = AB, DE = AE et $\widehat{BAE} = \widehat{CDE}$.

donc $\widehat{DEC} = \widehat{ABE} = 36^{\circ}$, donc c'est un triangle d'or.

Pour le triangle BEC: il est isocèle en E et l'angle \widetilde{BEC} mesure 36°, donc c'est un triangle d'or.

Exercice 79 p.274:

a. On sait que $\widehat{CAB} = 180 - 2x = 180 - 2 \times 36 = 180 - 72 = 108^{\circ}$.

La somme des angles d'un triangle est égale à 180,

donc
$$\widehat{ABC} = 180 - (\widehat{BAC} + \widehat{BCA}) = 180 - (108 + 36) = 180 - 144 = 36^{\circ}$$
.

b. On a
$$\widehat{CAB} = 180 - 2x$$
.

La somme des angles d'un triangle est égale à 180,

donc

$$\widehat{ABC} = 180 - (\widehat{BAC} + \widehat{BCA}) = 180 - (180 - 2x + x) = 180 - (180 - x) = 180 + 180 + x = x$$

Ainsi, quelque soit la valeur de x, $\widehat{ABC} = \widehat{BCA} = x$, le triangle est donc toujours rectangle en A.