

Streamlined Input for GameMaker 2022+

Version 1.0

Features Overview
●​ Create complex key configurations easily
●​ Support alternate keys for the same actions across keyboard, mouse, and gamepad

○​ example: WASD, Arrows, dpad, and analog stick for movement
●​ Detect held, pressed, released, double tap, rapid fire, and more
●​ Use any input that GM Supports: gamepad, mouse buttons, analog sticks, and more
●​ Access controls easily without the need of a global controller object

Your First Complete Control Configuration

What You Are Probably Doing Now…
Let’s quickly walk through a very basic example of how to get Complete Control working in your
game.

Let’s start with what should look pretty familiar. You’ve got a top down action game. You can use
the arrow keys to move and the space bar to attack. You can also use WASD to move and the
left mouse button to attack. Additionally, you support gamepads! So you can move with the
analog stick as well as the dpad, and attack with the A button.
Whew, that sounds like a nightmare! Let’s see what that might look like (for brevity’s sake, I’m
going to only show attack and left:

And that’s before you even start worrying about rebindable controls! Yuck!

So let’s use Complete Control to define two controller configs: one for gamepad and one for
keyboard and mouse that supports all of the controls we wanted to support.

Define Your Keyboard and Gamepad Input Groups
First, let’s set up our arrow keys and WASD. To do this we will use one of the built-in input
constructors for defining a 4 directional input on the keyboard: ArrowKeys. Since we want to
support two different ways to do the same thing (move in this case), we will create two
ArrowKeys with our different sets of buttons and store them in an array:

When we create a new ArrowKeys struct, we just pass it the buttons we want to use for right,
up, left, and down. The buttons are exactly what you would use for keyboard_check

Now let’s do something similar for our gamepad controls. This time we’ll use two different
constructors: AnalogStick and DPad

The AnalogStick wants to know which two gp_axis you want to use: left horizontal and left
vertical in our case. The DPad works exactly like the ArrowKeys: you just need to pass in the
buttons you want to use for right, up, left, and down.

Finally, let’s set up our attack buttons. We’ll use 3 new constructors for the different input types:
Key, MouseButton, and GamepadButton

Build Your Config
Time to bring all this together. We need to take all of these different controls and “group” them
logically under an Input. An Input represents a collection of buttons that all do the same “thing”.
In this example we have two inputs: Move and Attack. To build an Input is similar to what we just
did before, we need to new up an Input struct and give it our buttons and wrap all of them in an
array. This array represents our completed configuration.

So for each Input we pass 4 arguments.

1.​ The first is the name. This is what we will be using to access this input later, so name it
like you would a normal variable.

2.​ The type is either InputType.directional or InputType.button. This is mostly just to help
Complete Control know if you’ve made a mistake or not.

3.​ Your array of buttons for the keyboard/mouse configuration.
4.​ Your array of buttons for the gamepad configuration.

With all that, we are ready to actually USE Complete Control. It’s as easy as calling
use_complete_control and passing your config as well as which controller slot we are listening
to.

We’ll use that controls variable whenever we want to do anything with our controls for this
object. You can name it anyway you want (like input, keys, or whatever).

Reading Your Controls
Okay, yeah, that was a bit of an intense setup process, but I promise it will be worth it.

The next step is to update our controls. This is typically done in a step event.

Once you’ve called the update function, you are ready to read your controls!

Since move is an InputType.directional it has a direction property that will quickly give you the
direction the player is holding. Our attack input is an InputType.button so it has all the
properties you would expect a button to have like pressed, held, released, and even
doubleTapped. All of these available properties are detailed in a later section.

Summary
While the setup can be a bit overwhelming, once you get the hang of the pattern, it comes
together very quickly, and using it almost couldn’t be any easier. With a little practice, you’ll soon
be setting up complex configurations, alternate configurations, and maybe even allow for button
rebinding! Everything is under your COMPLETE CONTROL!

Global Variable Defaults
At the top of use_complete_control are a number of global variables. These can be changed to
whatever values you’d like, or you can leave them as is. Let’s go through each and discuss what
they are for.

global.nullDirectionValue = undefined

When using a directional input such as ArrowKeys or AnalogStick it can be important to know
when no direction is currently being held. In these cases, the direction property will return this
value. I recommend keeping this at undefined or a value less than 0 or greater than 360. You
could get very bad results if you give it any number in the standard 0 - 360 range.

global.defaultDoubleTap = 8

This is the default delay for what counts as a double tap. You can customize this for each
individual input if desired. The value represents how many frames can pass before the button is
hit a second time to count as a doubleTap.

global.defaultAnalogDeadzone = .25

This is the default value for analog stick dead zones. You can customize this for each individual
input if desired. The value represents how far the analog stick must be tilted before it is
registered as being held at all. Making this a higher value will mean the analog stick must be
held further to be detected.

global.defaultButtonDeadzone = .5

This is the default value for button dead zones. You can customize this for each individual input
if desired. Some buttons support analog input; most notably the triggers on Xbox and
Playstation controllers. This value will also be used when accessing any StickTilt input type. The
value represents how far the button must be held before it is registered as being held or pressed
at all. Making this a higher value will mean the button must be held further to be detected.

Controls Structure

use_complete_control(config, [controllerSlot])

This function returns a struct that is used to access any and all features of Complete Control.

Argument 0: an array of Input structs.

Argument 1: the controller slot to listen to. Default: -1 (no slot).

Once created, the Controls struct has some properties and functions for you to use.

currentControllerType

This property will contain a ControlType enum value. Either keyboard, mouse, or gamepad
based on the last button pressed. This is helpful when you want to change button prompt icons
or text based on the input the player is currently using. You often see this behavior on PC
games when switching between Keyboard and Gamepad. More often than not, you’ll only care
if the value is currently ControlType.gamepad or not.

update()

The most important function in the Controls structure. This must be called for the controls to be
updated and read. I recommend calling it in the step or begin step events.

reset()

This function can be called to reset any and all input back to default as if the controls had not
been touched yet. This is primarily useful when you are using AI to update the controls and
need to set everything back to default before updating the control state manually (covered in a
future section).

Input Structure

new Input(name, InputType, keyboardConfig, gamepadConfig)

This structure is used to define an input, typically named for an action that the input controls.

Argument 0: The name of your input as a string. This will be used to access the input’s
properties as if it was a normal variable on the struct. E.G. controls.attack.pressed. As such it is
important to follow the same naming rules as any standard variable; case sensitive, no spaces
or special characters.

Argument 1: The InputType; either directional or button. Represents the types of inputs collected
in the config arrays passed in the next two arguments. This is primarily to help through helpful
errors if you’ve done something Complete Control doesn’t support.

Argument 2: An array of keyboard inputs. Supported types: ArrowKeys, Key, MouseButton, and
MouseWheel. Do not combine ArrowKeys in the same array with any other supported type.

Argument 3: An array of gamepad inputs. Supported types: DPad, AnalogStick,
GamepadButton, and StickTilt. Do not combine DPad or AnalogStick in the same array with any
other supported type.

After you’ve defined your Controls struct by calling use_complete_control(), you’ll be able to
access any defined input by “dotting” into the controls struct and accessing it by the defined
name.

The properties under there will largely be determined by the type of input contained within.
However there are some universal properties and functions you have access to.

setRapidFire(minFrequency, maxFrequency, increment)

This function can be set to enable rapid fire on an input.

Argument 0: The minimum number of steps between the button being reported as “pressed”
when being held. If set to 5, for example, holding the button down will make the rapidPressed
property report true a minimum of every 5 steps.

Argument 1: The maximum number of steps between the button being reported as “pressed”
when being held. If set to 5, for example, holding the button down will make the rapidPressed
property report true a maximum of every 5 steps.

Argument 2: Every time rapidPressed reports true, the number of steps until the next true will
change based on this argument. Read below for a more detailed explanation of how to use this.

Rapid fire on a Complete Control Input can work in two different ways.

The first way is your standard rapid fire that hits the button every X frames at a consistent
rhythm while held. To get this behavior, set Argument 0 and Argument 1 to the same value and
Argument 2 to 0. An example of when you might use this behavior is in a space shoot ‘em up
where you want holding the button down to press the fire button for the player.

The second way is to have the rate of button presses increase (or less commonly decrease)
the longer the player holds the button down. To get this behavior, set Argument 0 and Argument
1 to the minimum and maximum press rate respectively and Argument 2 to the amount you want
the length of time between each press to change.

For example, I may have a volume slider in my options menu. The longer the player holds down
the same direction, I want to speed up how quickly the volume changes. To do this I would call:

As the player begins holding down the right button, it will take 30 steps to change the volume by
1. Then 29 steps to change it again, then 28 steps, then 27, until eventually changing it every
single step.

Final note: setRapidFire can be called when initially creating the input itself like so:

setDirection([direction], [percent])

It is possible to force a directional input type to report a specific direction being held. This is
especially useful for using AI to control an object.

Argument 0: The direction to hold. Must be a value greater than or equal to 0 and less than 360.
Defaults to the global.nullDirectionValue.

Argument 1: This argument represents how “far” the input is being held. Relevant for AI that can
utilize analog movement. Defaults to 1, or 100%.

setHeld(), setPressed(), setReleased(), & setDoubleTapped()

These functions can force a button input type to report true for the relevant properties. Again,
useful for AI that can control an object.

getBindings() EXPERIMENTAL

A utility function that is capable of returning the bindings for the Input. Not thoroughly tested,
and likely needs some more features added to it, but this function will return a complicated
structure detailing the bindings. It looks something like this:

Directional Inputs (InputType.directional)

When accessing any InputType.direction input, you’ll have access to many properties to
determine the state of the input. Let’s go over them.

any

Contains true or false based on if any direction is currently held on this Input.

hori

Contains a value between 1 and -1. 1 is right, 0 is neither left nor right, and -1 is left. Will contain
non-whole numbers of an AnalogStick type and will represent the raw value not adjusted for
deadzone.

vert

Contains a value between 1 and -1. 1 is down, 0 is neither up nor down, and -1 is up. Will
contain non-whole numbers of an AnalogStick type and will represent the raw value not
adjusted for deadzone.

direction

Contains a value greater than or equal to 0 and less than 360 if any direction is held down. Will
contain global.nullDirectionValue if no direction is held down.

percent

Contains the percentage that a direction is held on the Input. Should be either 0 or 1 in all cases
except when an AnalogStick type is involved. In which case the percent is scaled by the
deadzone value. If the deadzone is .25 and the analog stick is held 25% of the way, percent will
be 0,

deadzone

Contains the currently configured deadzone percentage. Should be a value between 0 and 1.
Only really relevant when an AnalogStick type is involved.

Furthermore, each Directional Input contains a property for right, up, left, and down. What that
value looks like will depend on the type of input.

ArrowKeys

new ArrowKeys(right, up, left, down, [doubleTap], [deadZone])

Creates a new ArrowKeys struct. This struct should be passed to an Input as part of the
keyboard bindings array argument for an InputType.directional input.

Argument 0: The keyboard key code for right.

Argument 1: The keyboard key code for up.

Argument 2: The keyboard key code for left.

Argument 3: The keyboard key code for down.

Argument 4: The currently configured number of steps a key must be tapped twice to count as a
doubleTap. Default global.defaultDoubleTap

Argument 5: The deadzone for the keys. This may be completely useless? I honestly forgot why
I had this at all, but I’m sure there’s a good reason. You probably don’t need to set it to anything
other than the default, which is global.defaultButtonDeadzone.

right, up, left, down

Each contains a Key struct with all relevant values.

DPad

new DPad(right, up, left, down, [doubleTap], [deadZone])

Creates a new DPad struct. This struct should be passed to an Input as part of the gamepad
bindings array argument for an InputType.directional input.

Argument 0: The gamepad button code for right.

Argument 1: The gamepad button code for up.

Argument 2: The gamepad button code for left.

Argument 3: The gamepad button code for down.

Argument 4: The currently configured number of steps a button must be tapped twice to count
as a doubleTap. Default global.defaultDoubleTap

Argument 5: The deadzone for the buttons. This may be completely useless? I honestly forgot
why I had this at all, but I’m sure there’s a good reason. You probably don’t need to set it to
anything other than the default, which is global.defaultButtonDeadzone.

right, up, left, down

Each contains a GamepadButton struct with all relevant values.

AnalogStick

new AnalogStick(hori axis, vert axis, [cardinalSnap] [doubleTap], [deadZone])

Creates a new DPad struct. This struct should be passed to an Input as part of the gamepad
bindings array argument for an InputType.directional input.

Argument 0: The gp_axis code for left and right.

Argument 1: The gp_axis code for up and down.

Argument 2: Setting this argument to true will change the deadzone to be “plus shaped”, making
it easier to hold a cardinal direction. Defaults to false.

Argument 3: The currently configured number of steps a direction must be tapped twice to count
as a doubleTap. Default global.defaultDoubleTap

Argument 4: The deadzone for the stick. Default is global.defaultButtonDeadzone.

right, up, left, down

Each contains a StickTilt struct with all relevant values.

Button Inputs (InputType.button)

When accessing any InputType.button input, you’ll have access to many properties to determine
the state of the input. Let’s go over them.

button

Contains the binding for the given input. This would be the value passed when creating the input
type.

doubleTapGap

The currently configured number of steps a button must be tapped twice to count as a
doubleTap.

deadzone

The currently configured deadzone for the button. Only relevant for StickTilt and
GamepadButton bound to triggers.

pressed

Contains true if the button was pressed this step.

lastPressed

Contains a timer that tracks how many steps ago the button was pressed. Useful for input
buffering.

rapidPressed

Contains true if the button is pressed or it is held and the rapid fire timer reports it should report
pressed. Use this property to check the button state if you want to support rapid fire.

released

Contains true if the button was released this step.

releasedTimer

Contains a timer that tracks how many steps ago the button was released. Useful for input
buffering.

held

Contains true if the button is currently held down.

heldTimer

Contains a timer that tracks how long the button has been held.

value

Contain the current value of the button. For digital buttons will contain 0 if not held and 1 if held.
For StickTilt and a GamepadButton bound to a trigger, it will report the raw value between 0 and
1 for that button without taking deadzone into consideration.

any

Contains true if doubleTapped, held, pressed, or released is true.

Key

new Key(keyCode, [doubleTapGap])

Creates a new Key struct. This struct should be passed to an Input as part of the keyboard
bindings array argument for an InputType.button input.

Argument 0: The keyboard key code to bind the button to.

Argument 1: The currently configured number of steps a key must be tapped twice to count as a
doubleTap. Default: global.defaultDoubleTap.

GamepadButton

new GamepadButton(gamepadButtonCode, [doubleTapGap], [deadZone])

Creates a new GamepadButton struct. This struct should be passed to an Input as part of the
gamepad bindings array argument for an InputType.button input.

Argument 0: The gamepad button code to bind the button to.

Argument 1: The currently configured number of steps a button must be tapped twice to count
as a doubleTap. Default: global.defaultDoubleTap.

Argument 2: The deadzone for triggers. Default is global.defaultButtonDeadzone.

MouseButton

new MouseButton(keyCode, [doubleTapGap])

Creates a new MouseButton struct. This struct should be passed to an Input as part of the
keyboard bindings array argument for an InputType.button input.

Argument 0: The mouse button code to bind the button to.

Argument 1: The currently configured number of steps a key must be tapped twice to count as a
doubleTap. Default: global.defaultDoubleTap.

MouseWheel

new MouseWheel(mouseWheelFunction, [doubleTapGap])

Creates a new MouseWheel struct. This struct should be passed to an Input as part of the
keyboard bindings array argument for an InputType.button input.

Argument 0: Either mouse_wheel_up or mouse_wheel_down. No parentheses.

Argument 1: The currently configured number of steps the mouse wheel must be turned twice in
the same direction to count as a doubleTap. Default: global.defaultDoubleTap.

StickTilt

new StickTilt(gp_axis, posOrNeg, [doubleTapGap], [deadZone])

Creates a new StickTilt struct. This struct should be passed to an Input as part of the gamepad
bindings array argument for an InputType.button input.

Argument 0: The gamepad axis code to bind to.

Argument 1: Whether the stick needs to be tilted in the positive or negative direction. -1 for left
and 1 for right on a horizontal stick axis. -1 for up and 1 for down on a vertical stick axis.

Argument 2: The currently configured number of steps the stick must be tilted twice to count as
a doubleTap. Default: global.defaultDoubleTap.

Argument 3: The deadzone for the stick. Default is global.defaultButtonDeadzone.

	
	Features Overview
	Your First Complete Control Configuration
	What You Are Probably Doing Now…
	Define Your Keyboard and Gamepad Input Groups
	Build Your Config
	Reading Your Controls
	Summary

	Global Variable Defaults
	global.nullDirectionValue = undefined
	global.defaultDoubleTap = 8
	global.defaultAnalogDeadzone = .25
	global.defaultButtonDeadzone = .5

	Controls Structure
	use_complete_control(config, [controllerSlot])
	currentControllerType
	update()
	reset()

	Input Structure
	new Input(name, InputType, keyboardConfig, gamepadConfig)
	setRapidFire(minFrequency, maxFrequency, increment)
	setDirection([direction], [percent])
	setHeld(), setPressed(), setReleased(), & setDoubleTapped()
	getBindings() EXPERIMENTAL

	Directional Inputs (InputType.directional)
	any
	hori
	vert
	direction
	percent
	deadzone
	ArrowKeys
	new ArrowKeys(right, up, left, down, [doubleTap], [deadZone])
	right, up, left, down

	DPad
	
	new DPad(right, up, left, down, [doubleTap], [deadZone])
	right, up, left, down

	AnalogStick
	new AnalogStick(hori axis, vert axis, [cardinalSnap] [doubleTap], [deadZone])
	right, up, left, down

	Button Inputs (InputType.button)
	button
	doubleTapGap
	deadzone
	pressed
	lastPressed
	rapidPressed
	released
	releasedTimer
	held
	heldTimer
	value
	any
	Key
	new Key(keyCode, [doubleTapGap])

	GamepadButton
	new GamepadButton(gamepadButtonCode, [doubleTapGap], [deadZone])

	MouseButton
	new MouseButton(keyCode, [doubleTapGap])

	MouseWheel
	new MouseWheel(mouseWheelFunction, [doubleTapGap])

	StickTilt
	new StickTilt(gp_axis, posOrNeg, [doubleTapGap], [deadZone])

