## Using the TI-84 for Statistics in Biology

The calculator can be used to enter data from experiments. This data can then be manipulated to produce statistics such as mean and standard deviation and student t-tests. You can also download the data into programmes such as excel through a piece of hardware called the graph-link or TiConnect.

## Basic Statistics: Mean & Standard Deviation

Data are stored in lists. If data are in the lists from previous experiments, the lists will need to be cleared. If no data is present, you are ready to begin the problem.

Press the STAT button. Either press 4 and <u>do not</u> press ENTER **OR** use the cursor keys to move down to ClrList and <u>do press ENTER</u>

You will now need to specify which list you want to clear. (You use the blue 2nd button to choose your list.) Press 2nd and then press 1. Press ENTER.

You will now have cleared list 1 and you are free to enter the data.

a) Press the STAT button again. The Edit function is highlighted by default. Press ENTER. Now enter the following data by pressing enter after each number.

9 enter 7 enter 6 enter 10, 4, 5, 6, 7, 9, 6, 9, 8, 7, 8, 5

|    | ate a number of single va | ariable statistics. You must sp | so that CALC is highlighted. Press ENTER t ecify which list you want to do the calculation e statistics for $L_1$ and then press ENTER. |  |
|----|---------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| c) | What is the mean?         | , the standard deviation?       | , the number of statistics used?                                                                                                        |  |

## Student's *t*-test

To test whether there was any difference in the size of trees growing on the top of a hill and at the bottom near a creek, some data were collected. The diameters of a random sample of ten trees on the hilltop and ten by the creek were measured.

A *t*-test can be used to find out if there was a significant difference.

| Location | Height (feet) |    |    |    |    |    |    |    |    |    |
|----------|---------------|----|----|----|----|----|----|----|----|----|
| By Creek | 50            | 75 | 23 | 63 | 34 | 75 | 40 | 44 | 80 | 10 |
| Hill Top | 15            | 10 | 24 | 30 | 9  | 26 | 5  | 24 | 10 | 13 |

- a. Clear your  $L_1$  as specified in the instructions above.
- b. Clear your  $L_2$  using the same procedure.
- c. Enter the **By Creek** data into  $L_1$  and the **Hill Top** data into  $L_2$ .
- d. Push the STAT button
- e. Move the cursor to the TESTS menu.
- f. Press 4; the default should be Data (it will be flashing), Pooled should be highlighted as Yes
- g. Move the cursor down to the last row off the screen until you see the flashing Calculate.
- h. Press ENTER.

| i. | What is the mean of List 1? of List 2?                                                                                                                                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| j. | What is the value of t?How many degrees of freedom should be used?                                                                                                                  |
| k. | Use the chart of <b>Critical Values of t.</b> Is there a significant difference between trees on the hill top and trees by the creek? Justify your answer on the back of this page. |
| 1. | Find the standard deviations for each list in your calculator. List 1List 2                                                                                                         |
| m. | What is the median value of each list? List 1 List 2                                                                                                                                |

Example derived from Allott Biology for the IB Diploma, 2001