
ASSU Website Design Document
Problem & Goals

●​ Problem Statement:
○​ This project aims to rebuild the ASSU website using a modern static frontend

with a headless WordPress backend. The current WordPress site on Bluehost is
difficult to maintain due to legacy HTML/CSS uploads and a lack of CI/CD or
version control. The redesigned site will mirror content from the prototype
(https://jennykwon0712.wixsite.com/u-of-t-assu) and provide a maintainable,
accessible, and responsive interface.

●​ Goals:
○​ Finished by the end of August.
○​ Editors update content via WordPress only. No direct code or hosting edits

unless bigger changes are required.
○​ Automatic rebuilds on content changes for specific dynamic pages.
○​ Meets WCAG guidelines and works responsively across devices.

●​ Future Goals
○​ Implement event calendar and forum
○​ Consider completely migrating from WP

Architecture

●​ Backend: WordPress (Bluehost)
○​ Maintains content for all dynamic pages
○​ WP REST API is used to query page/post content
○​ Webhooks plugin sends GitHub dispatch events on publish/update

●​ Frontend: Static Site (Hosted on Vercel)
○​ Pages statically generated with getStaticProps
○​ Content fetched from WP REST API. Content will be sanitized using Cheerio
○​ GitHub Actions used for CI/CD
○​ Hosted via GitHub Pages or Vercel

Tech Stack

●​ Next.js: Static generation + revalidation
●​ React + Tailwind CSS + Shadcn: UI framework
●​ GitHub Actions: CI/CD
●​ Vercel or GitHub Pages: Deployment
●​ WP REST API: Data source

https://jennykwon0712.wixsite.com/u-of-t-assu

Static + Dynamic Page Layouts

●​ /about
○​ /assu
○​ /executives: fetched from

https://assu.ca/wp/wp-json/wp/v2/pages?slug=assu-executive
○​ /staff

●​ /course-unions
○​ /unions
○​ /union-resources

●​ /get-involved
○​ /upcoming
○​ /initiatives
○​ /current

●​ /gallery
●​ /awards-and-grants

○​ /awards
○​ /grants

●​ /services-and-resources
○​ /office-services
○​ /tests: fetched from

https://assu.ca/wp/wp-json/wp/v2/pages?slug=past-test-library
○​ /resources
○​ /documents: fetched from

https://assu.ca/wp/wp-json/wp/v2/pages?slug=documents
○​ /handbook:
○​ /misc

●​ /news: fetched from https://assu.ca/wp/wp-json/wp/v2/posts?categories=24
●​ /contact-us
●​ /faq: https://assu.ca/wp/wp-json/wp/v2/pages?slug=faq

Frontend Components

Component Types

Component Pages Screenshot Specifications

https://assu.ca/wp/wp-json/wp/v2/pages?slug=faq

Header All Ensure all interactive elements (links, buttons)
are navigable using the keyboard (Tab, Enter,
Space, etc.).
Use proper HTML semantic elements (e.g.,
<nav>, <button>) for screen readers.
Provide alt text for logo.
Add ARIA labels and roles (e.g.,
aria-label="Search").
Clear visual focus states (e.g., outline or border)
for focusable elements when navigating with the
keyboard.
Ensure the header is usable on mobile devices
with touch interactions.
Implement a mobile-friendly navigation (e.g.,
collapsible hamburger menu).
Support text resizing without breaking the layout.
Ensure clickable elements are large enough for
easy tapping (e.g., 44x44px minimum touch
target size).

Footer All

Ensure all interactive elements (links, buttons)
are navigable using the keyboard (Tab, Enter,
Space, etc.).
Use proper HTML semantic elements (e.g.,
<nav>, <button>) for screen readers.
Provide alt text for icons.
Add ARIA labels and roles (e.g.,
aria-label="Search").
Clear visual focus states (e.g., outline or border)
for focusable elements when navigating with the
keyboard.
Ensure the header is usable on mobile devices
with touch interactions.
Implement a mobile-friendly navigation (e.g.,
collapsible hamburger menu).
Support text resizing without breaking the layout.
Ensure clickable elements are large enough for
easy tapping (e.g., 44x44px minimum touch
target size).

Hero Text All

mobile safe line length + spacing

Image Carousel /, /unions,

Ensure keyboard navigation: Users should be
able to navigate through images using the Tab
key, and activate next/previous actions with
Arrow keys or Enter/Space.

Provide clear focus indicators: Focus should be
visible on interactive elements like navigation
buttons and image indicators when using the
keyboard.

Use ARIA roles:

role="region" for the carousel container.

role="img" for each image.

aria-live="polite" to announce image changes for
screen readers.

Ensure mobile-friendliness: Images and
navigation should be easily touchable and
responsive across different devices.

Provide visible navigation controls: Include
clearly labeled next/previous buttons and image
indicators (dots or thumbnails) for easy
navigation.

Card Grid /. /unions

Ensure keyboard navigation: Users should be
able to navigate through the cards using the Tab
key and interact with them using Enter or Space.

Use ARIA roles:

role="grid" for the container.

role="row" for rows and role="gridcell" for
individual cards.

Provide aria-labelledby or aria-describedby to
link card titles/descriptions for screen readers.

Ensure focus management: When navigating
between cards, focus should move logically, and
users should be able to interact with each card's
content.

Provide responsive design: The card grid should
adapt to various screen sizes (e.g., mobile,
tablet, desktop), maintaining usability and visual

clarity.

Ensure touch-friendly interaction: Cards should
be large enough for easy tapping on mobile
devices, with clickable areas at least 44x44px.

Content Grid /about, /executives, /staff, /get-involved,
/initiatives, /projects, /awards-grants,
/grants,/services-resources, /office-services, /faq,
/useful-links, /map

Ensure keyboard navigation: Users should be
able to navigate between grid items using the
Tab key and interact with them using Enter or
Space
Use ARIA roles
Ensure focus management: Focus should move
logically through the grid items, with each item
being focusable and interactable
Provide responsive design: The grid should
adapt to different screen sizes, adjusting the
number of columns or layout for mobile, tablet,
and desktop
Ensure touch-friendly interaction: Grid items
should be large enough to be easily tapped on
mobile devices (at least 44x44px touch target
size)

Image Card /, /unions,

Ensure keyboard navigation: Users should be
able to navigate through image cards using the
Tab key and interact with them using Enter or
Space​
 Provide alt text for images: Use descriptive alt
attributes to ensure screen readers can describe
the images for visually impaired users​
Use ARIA roles:

Ensure responsive design: The image card
should adapt to different screen sizes, adjusting
the image and content layout for mobile, tablet,
and desktop​
 Provide clear focus indicators: Ensure visible
focus states on the image card when navigated
via keyboard​

Button /, /get-involved, /initiatives, /awards-grants,
/services-resources, /faq

●​ keyboard accessible (supports tab,
enter space)

●​ focus ring on keyboard focus/hover
●​ mobile sizing

●​ screen reader support
using a imported button component does
most of this for u already, if u choose to
import use shadcn. only thing u would have
to do afterwards would be mobile sizing.

Email Capture Form /, /contact-us

Blog List /events

Ensure keyboard navigation: Users should be
able to navigate through blog list items using the
Tab key and interact with them using Enter or
Space.
Use ARIA roles and attributes to ensure screen
readers properly interpret the list and individual
items.
Ensure focus management: Focus should move
logically through the blog list items and be clearly
visible when navigating via keyboard.
Provide responsive design: The blog list should
adapt to different screen sizes, ensuring usability
on mobile, tablet, and desktop.
Ensure touch-friendly interaction: Blog list items
should be large enough for easy tapping on
mobile devices, with a minimum touch target size
of 44x44px.

Vertical Timeline /about

Ensure keyboard navigation: Users should be
able to navigate through the timeline items using
the Tab key and interact with them using Enter or
Space.
Use ARIA roles and attributes to ensure screen
readers can properly interpret each timeline item
and the timeline as a whole.
Provide clear visual indicators: Ensure each
timeline item is visually distinguishable and
progresses logically down the vertical timeline.
Ensure responsive design: The timeline should
adapt to different screen sizes, ensuring
readability and usability on mobile, tablet, and
desktop.
Ensure touch-friendly interaction: Timeline items
should be large enough for easy tapping on
mobile devices, with a minimum touch target size
of 44x44px.

Map /about, /contact-us

Ensure the map is interactive: Users should be
able to zoom in/out and pan around the map,
even if the location is fixed.
Provide clear visual indicators: Display a marker
or pin to indicate the fixed location on the map.
Ensure accessibility: Use ARIA roles and labels
to ensure the map and location are properly
interpreted by screen readers.
Ensure responsive design: The map should
adapt to different screen sizes and maintain
usability on mobile, tablet, and desktop.
Ensure touch-friendly interaction: Map controls
(zoom, pan) should be easily tappable on mobile
devices, with appropriate touch targets.

Text Section All

responsive text sizes and spacing for mobile +
desktop
support for semantic tags (e.g., <h2>, <p>), any
fancy text (italics, bold, etc)
props: alignment (left, center),
mobile safe line length + spacing

Image /about, executives, /staff, /initiatives, /projects

make sure its accessible (alt, aria-label, caption,
etc. google some image reqs for accesssibiliity /
screenreading)
fallback + error handling (as it loads, make sure
a skeleton is generated in the meantime,
otherwise show err image if can't load properly)
define sizes for responsive layouts (make sure it
fills correctly for screen size, make sure it doesnt
overlap if screen size too small)

for mobile:
make sure images dont have horz scrolling

Link /union-resources, /awards, /documents,
/handbook, /useful-links

renders using next/link with proper rel and target
supports keyboard navigation (ie i can tab to it)
highlights current/active link if used for
navigation
opens external links in a new tab with
rel="noopener noreferrer" (open in new tab)

Multi-Image Carousel /gallery

Ensure keyboard navigation: Users should be
able to navigate through images using the Tab
key and interact with carousel controls using
Enter or Space.
Provide alt text for each image: Use descriptive
alt attributes to ensure screen readers can
describe the images for visually impaired users.
Ensure ARIA roles and attributes: Use proper
ARIA roles for the carousel, such as
role="region" for the container and role="img" for
the images.
Ensure responsive design: The carousel should
adapt to different screen sizes, ensuring usability
on mobile, tablet, and desktop.
Ensure touch-friendly interaction: Carousel
controls (next, previous) and images should be
easily tappable on mobile devices, with touch
targets large enough for easy interaction.

Tab Component /awards

Ensure keyboard navigation: Users should be
able to switch between tabs using the Tab key
and activate a tab using Enter or Space.

Use ARIA roles and attributes for the individual
parts of the component.

Ensure focus management: Focus should move

to the active tab when switching tabs, and focus
should be set on the content of the active tab.

Provide clear visual focus indicators for each tab
and content area when navigating using the
keyboard.

Ensure screen reader compatibility: Ensure
screen readers correctly announce the selected
tab and the associated content.

Mobile-friendly design: Ensure tabs are
touch-friendly, with adequate padding or
clickable area (minimum 44x44px).

Responsive layout: Tabs should be usable and
properly displayed on mobile, tablet, and desktop
sizes.

Provide clear, distinguishable tab styles: Tabs
should have visual cues to indicate which tab is
active (e.g., different colors, underline, etc.).

Divider All Ensure the divider is visually distinguishable and
does not disrupt the content flow.

Use semantic HTML (<hr> element) for simple
horizontal dividers or create a custom
component with proper ARIA roles if needed.

Provide sufficient contrast between the divider
and surrounding content for visibility.

Ensure the divider is fully accessible with screen
readers (e.g., role="separator" for custom
dividers).

Ensure the divider does not interfere with
keyboard focus navigation between content
sections.

Provide clear spacing around the divider to
visually separate sections without overcrowding.

Ensure the divider behaves correctly on various
screen sizes (responsive).

Ensure the divider’s size is appropriate and does
not become too thin on high-resolution screens.

Key-Value List /past-exam-library

Use appropriate ARIA roles like role="list" for the
list and role="listitem" for each key-value pair.
Use role="definition" for describing terms and
values.

Use aria-labelledby to associate keys with their
corresponding values, ensuring screen readers
can link them properly.

Use aria-describedby to provide additional
descriptions for values, if necessary, for more
context.

Ensure key-value pairs are read in a meaningful
order. Screen readers should announce the key
first, followed by the value.

Use distinct visual styles (e.g., bold for keys,
normal text for values) to differentiate keys from
values.

Ensure each key is clear, concise, and
meaningful to describe its associated value.

Ensure the list is usable on various screen sizes,
from desktop to mobile, with responsive layouts.

If the key-value list is long, ensure it’s scrollable
and users can navigate through it using both
keyboard and touch.

Make sure the list is readable in high-contrast
mode for users with visual impairments.

Ensure the key-value list adapts to text resizing
without breaking the layout or accessibility.

Allow users to focus and interact with both the
key and value in a way that respects their
reading and navigation preferences.

Accordian /faq, /documents

Allow users to open/close accordion items using
keyboard (Enter or Space).

Ensure focus moves logically through accordion
items (use Tab to move between items).

Use role="region" for the accordion container.
Use aria labels
Move focus to expanded content or the next
logical element when opening.

Ensure focus remains on the correct header or
item when collapsing.

Provide visible focus indicators on focused
headers (e.g., border, background).

Make accordion touch-friendly with large
clickable/tappable elements (44x44px minimum).

Allow users to tap headers to open/close
accordion items on mobile.

Indicate open/closed states with visual cues like
arrows or plus/minus icons.

Announce open/closed state to screen readers
with aria-expanded.

Hide collapsed content visually but keep it
accessible for screen readers (display: none or
visibility: hidden).

Avoid auto-expanding sections to prevent
overwhelming users.

Dynamic Components
●​ /about

○​ /assu
○​ /executives: fetched from /staff

●​ /course-unions
○​ /unions
○​ /union-resources

●​ /get-involved
○​ /upcoming
○​ /initiatives

○​ /current
●​ /gallery
●​ /awards-and-grants

○​ /awards
○​ /grants

●​ /services-and-resources
○​ /office-services
○​ /tests: fetched from
○​ /resources
○​ /documents: fetched from
○​ /handbook:
○​ /misc

●​ /news: fetched from
●​ /contact-us
●​ /faq:

Page Component Name Data Source Data Type Method of fetching

/executives Content Grid, Image Fetched from
https://assu.ca/wp/wp-json/wp/v2/
pages?slug=assu-executive

type Executive = {
 name: string;
 title: string;
};

Use getStaticProps to fetch data
during build, filter and clean json
data appropriately to fit into data
models, then expose to rendered
components at view.

/past-exam-library Key Value List https://assu.ca/wp/wp-json/wp/v2/
pages?slug=past-test-library

type CourseTestEntry = {
 department: string;
 courses: string[];
};

Use getStaticProps to fetch data
during build, filter and clean json
data appropriately to fit into data
models, then expose to rendered
components at view.

/documents Accordian https://assu.ca/wp/wp-json/wp/v2/
pages?slug=documents

type DocumentLink = {
 label: string;
 url: string;
};

type DocumentSection = {
 title: string;
 files: DocumentLink[];
};

type DocumentsPageContent = {
 sections: DocumentSection[];
};

Use getStaticProps to fetch data
during build, filter and clean json
data appropriately to fit into data
models, then expose to rendered
components at view.

/news Blog List https://assu.ca/wp/wp-json/wp/v2/
posts?categories=24

type WPPageContent = {
 id: 0: int,
 slug: str,

Use getStaticProps to fetch data
during build, filter and clean json
data appropriately to fit into data

 title: str,
 Img_url: str,
 content: str
};

models, then expose to rendered
components at view.

/faq Accordian https://assu.ca/wp/wp-json/wp/v2/
pages?slug=faq

type WPFAQEntry = {
 question: string;
 answer: string;
};

type WPFAQPage = {
 faq: WPFAQEntry[];
};

Use getStaticProps to fetch data
during build, filter and clean json
data appropriately to fit into data
models, then expose to rendered
components at view.

Alternatives

Options Advantages Trade-offs Cost

Headless WP +
Vecel Hobby Plan
(chosen)

●​ Editors keep current
Wordpress UI

●​ Automatically update the
new website on publish

●​ Frontend website design is
completely controlled by
students

●​ Long update times for
website updates

Free (up to approx 50k users
per month)
Pro: 20 dollars a month

Free HeadlessCMS
Options (TinaCMS,
NetlifyCMS, Cockpit,
ApostropheCMS)

●​ Editors have a UI to publish
updates

●​ Direct API integration
without having to worry
about using a WP API

●​ Website can be hosted for
free while still using Rebel
domain

●​ Fine‑grained access control
(roles, drafts, review flows)

●​ Long update times for
website updates

●​ Unlikely but may hit
website usage cap

●​ No email/storage
integration.

Free

Enterprise
HeadlessCMS
Options (Sanity

●​ Editors have a UI to publish
updates

●​ Long update times for
website updates

●​ Expensive

Pricing varies per provider, but
generally more or similar price
to current bluehost provider.

https://assu.ca/wp/wp-json/wp/v2/pages?slug=faq
https://assu.ca/wp/wp-json/wp/v2/pages?slug=faq

CMS, PayloadCMS,
NetlifyCMS)

●​ Direct API integration
without having to worry
about using a WP API

●​ Website can be hosted for
free while still using Rebel
domain

●​ Fine‑grained access control
(roles, drafts, review flows)

Rebuild from
Scratch (Next.js +
Express API)

●​ No WP legacy
●​ Open source

●​ High development cost
●​ Risk missing deadline
●​ Need to manage

security risks
●​ Editors will have to talk

to technical team to
make new updates

Hosting costs vary, but much
less than Enterprise
HeadlessCMS

Static WP +
Bluehost Uploads

●​ Easiest to implement
●​ No backend development

needed

●​ Little to no control over
ASSU website design

●​ Harder to maintain

Free

Implementation Timeline

Aug 3 - 9: Setup + Core Infrastructure -​ Onboard team
-​ Connect WordPress REST API
-​ Set up endpoint test calls
-​ Finalize website routes
-​ Configure Vercel deploy
-​ Set up global layout: Header, Footer,

Routing
-​ Create utility: fetch + clean WP content

using getStaticProps
-​ Setup global css styles + fonts
-​ Set up Cheerio to clean up JSON data
-​ Set up CI/CD with GitHub Actions
-​ Trigger rebuilds on content changes

(webhook)

Aug 10 - 16: -​ Implement core components or import
them from Shadcn instead

-​ Import core images, add to Next.js
optimization

-​ Finish wireframe for all routes
-​ Migrate all static content to site

http://next.js

-​ Apply CSS + global styling

Aug 17 - 22: -​ Continue previous week (TODO: ask how
to estimate time properly for a team
project)

Aug 23 - 30: -​ Pass first MVP back to ASSU, get
feedback

-​ Iterate on feedback, polish as necessary
-​ Documentation

Github Link

https://github.com/utcjcao/ASSU

1.​ Todo list
a.​ Standardize team tools

i.​ Jira board
ii.​ List of things to document
iii.​ Make a list of PR requirements before PR
iv.​ Standardize git branch strategy

1.​ Main: production ready
2.​ Dev: active development
3.​ Fix: fixing an issue
4.​ Feature: implementing a new feature

v.​ Write out github action list
b.​ Standardize styles

i.​ Fonts
ii.​ Color palette

c.​ Micro components
i.​ Buttons
ii.​ Links
iii.​ SVGS
iv.​ Images
v.​ Hero Image

vi.​ Text Section
vii.​ Hero Text

d.​ Import components, then restyle
i.​ Accordian
ii.​ Blog List
iii.​ Key Value List
iv.​ Tab Component
v.​ Image Carousel

https://github.com/utcjcao/ASSU

vi.​ Multi- Image Carousel
vii.​ Map
viii.​ Vertical Timeline

e.​ Macro components
i.​ Header
ii.​ Footer
iii.​ Image Card
iv.​ Card Grid
v.​ Content Grid

f.​ Create Pages
i.​

	ASSU Website Design Document
	Problem & Goals
	Architecture
	Tech Stack
	Static + Dynamic Page Layouts
	Frontend Components
	Component Types
	Dynamic Components

	Alternatives
	Implementation Timeline
	Github Link

