Secondary Math 2A

Unit 6A Lesson 24-25: Diagonals of a Parallelogram

Vocabulary:

Bisect: divide into two equal parts

Bisector: the line that divides something into equal parts

Diagonal: a line segment that connects two non-consecutive vertices of a shape

Parallelogram: a quadrilateral with two pairs of opposite parallel sides

Diagonals of a Parallelogram:

The diagonals of a parallelogram have a special property, they bisect each other. This means they cut each other into two equal pieces. The diagonals themselves are not necessarily the same, unless it is a rectangle, but more on that later.

Prove: Diagonals of a Parallelogram bisect each other

Given: Parallelogram ABCD

Using this Theorem

Example Quick Check Problems

1) What is true about the diagonals of ALL parallelograms?

2) What is the error in the proof of the Diagonals of a Parallelogram Theorem below

Given: $\square ABCD$ Prove: \overline{AC} and \overline{BD} bisect each other at E.

Statements	Reasons
ABCD is a parallelogram	Given
$\overline{AB} \parallel \overline{DC}$	Definition of a Parallelogram
∠1≅∠4, ∠2≅∠3	Alternate Interior Angles Theorem
$\overline{AB} \cong \overline{DC}$	Opposite Sides of a Parallelogram are Congruent
ΔABE≅ΔCED	SAS Congruency
$\overline{BE} \cong \overline{DE}, \ \overline{AE} \cong \overline{CE}$	СРСТС
\overline{AC} and \overline{BD} bisect each other	Definition of a Bisector

3) WXYZ is a parallelogram, the diagonals of the parallelogram meet at point A. John states that he knows $\overline{WA} \cong \overline{XA}$. Is John correct?

4) Given that $\overline{FG} \cong \overline{GH}$ in the diagram below, list all segments that you know must be congruent to \overline{KH} .

5) Is the following statement sometimes true, always true, or never true? In parallelogram WXYZ with diagonals that meet at point A, we know that $WA = \frac{1}{2}WY$.