Topic C.6 Electrochemistry, Rechargeable Batteries & Fuel Cells

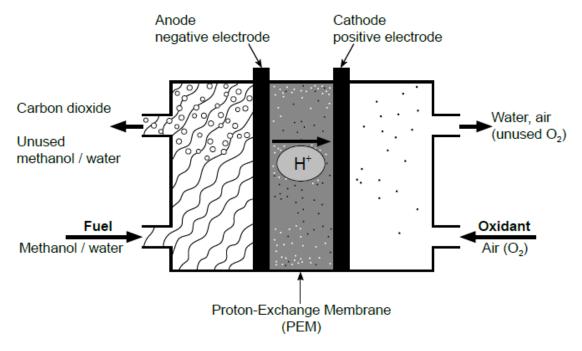
Past Exam Questions (Paper 3)

1a. [2 marks]

A fuel cell is an energy conversion device that generates electricity from a spontaneous redox reaction.

The *Geobacter* species of bacteria can be used in microbial fuel cells to oxidise aqueous ethanoate ions, CH₃COO⁻(aq), to carbon dioxide gas.

State the half-equations for the reactions at both electrodes.


Negative electrode (anode):	
Positive electrode (cathode):	
1b. [3 marks]	
A concentration cell is an example of an electrochemical cell.	
(i) State the difference between a concentration cell and a standard voltaic cell	

(ii) The overall redox equation and the standard cell potential for a voltaic cell are:
$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ $E_{cell}^{\theta} = +1.10 \text{ V}$
Determine the cell potential E at 298 K to three significant figures given the following concentrations in mol dm ⁻³ :
$[Zn^{2+}] = 1.00 \times 10^{-4}$ $[Cu^{2+}] = 1.00 \times 10^{-1}$
Use sections 1 and 2 of the data booklet.
(iii) Deduce, giving your reason, whether the reaction in (b) (ii) is more or less spontaneous than in the standard cell.
2
2a. [3 marks]
A fuel cell converts chemical energy directly to electrical energy.
Deduce the half-equations and the overall equation for the reactions taking place in a direct methanol fuel cell (DMFC) under acidic conditions.
Negative electrode (anode):

Positive ele	ctrode (cathode):
Overall equ	ation:
	s] e advantage and one disadvantage of the methanol cell (DMFC) compared with a xygen fuel cell.
Advan	tage:
Disadv	vantage:

3a. [3 marks]

As well as being burnt, methanol can also be used to provide electricity through a fuel cell. A schematic diagram of such a fuel cell, that depends on the transfer of hydrogen ions between the electrodes, is shown below.

[Source: adapted from http://greenbigtruck.com]

Deduce half-equations for the reactions at the two electrodes and hence the equation for the overall reaction.

Negative electrode (anode):			
Positive electrode (cathode)	:		
Overall equation:			

Even though fuel cells, primary cells and rechargeable cells have similar fundamental characteristics, there are important differences between them.
Suggest a way in which they are similar.
3c. [1 mark]
Outline the difference between primary and rechargeable cells.
3d. [2 marks]
Identify one factor that affects the voltage of a cell and a different factor that affects the current it can deliver.
Voltage:
Current:
Current:

3b. [1 mark]

4a. [2 marks]
There are many sources of energy available.
Methanol fuel cells provide a portable energy source. The process can be represented by the overall equation $CH_3OH(aq) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$.
Deduce the half-cell equations occurring at each electrode during discharge.
Negative electrode (anode):
Positive electrode (cathode):
4b. [1 mark]
Outline the function of the proton-exchange membrane (PEM) in the fuel cell.

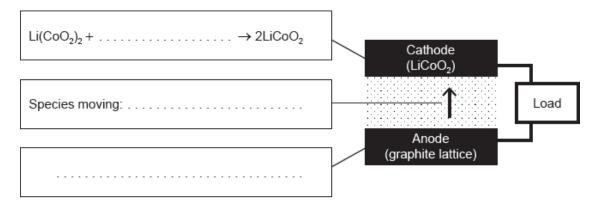
4c. [2 marks]
Explain how the flow of ions allows for the operation of the fuel cell.
5a. [1 mark]
Chemical energy from redox reactions can be used as a source of electrical energy.
Outline how a rechargeable battery differs from a primary cell.
5b. [2 marks]
Formulate half-equations for the reactions at the anode (negative electrode) and cathode (positive electrode) during discharge of a lithium-ion battery.
Negative electrode (anode):
Positive electrode (cathode):

5c. [2 marks]

A voltaic cell consists of a nickel electrode in $1.0 \text{ mol dm}^{-3} \text{ Ni}^{2+}$ (aq) solution and a cadmium electrode in a Cd²⁺ (aq) solution of unknown concentration.

Cd (s) + Ni²⁺ (aq)
$$\rightarrow$$
 Cd²⁺ (aq) + Ni (s) $E_{cell}^{\Theta} = 0.14 \text{ V}$

Determine the concentration of the Cd^{2+} (aq) solution if the cell voltage, E, is 0.19 V at 298 K. Use section 1 of the data booklet.

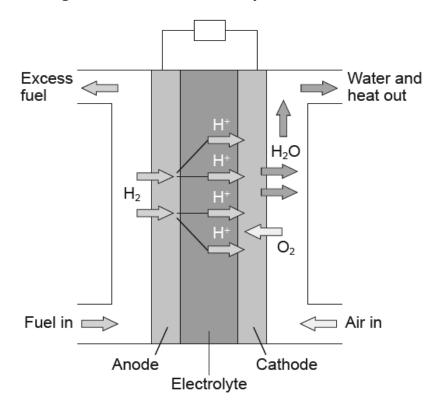


6a. [3 marks]

Modern electric cars store their energy in lithium ion batteries.

The diagram represents a cell in such a battery delivering a current.

Complete the half-equations on the diagram and identify the species moving between the electrodes.

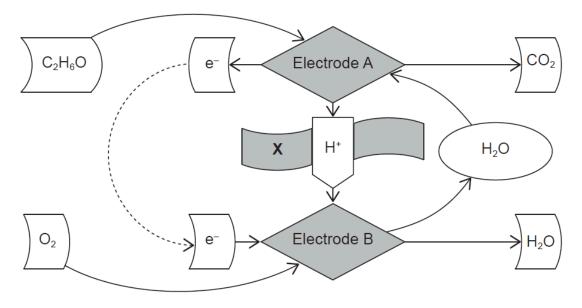

6b. [2 marks]

State the factor that limits the maximum current that can be drawn from this cell and how electrodes are designed to maximize the current.

Limiting factor:	:		
Electrodes des	sign:		

7a. [2 marks]

A proton-exchange membrane (PEM) fuel cell uses pure hydrogen gas as the fuel and a proton exchange membrane as the electrolyte.


Deduce the half-equations for the reactions occurring at the electrodes.
Negative electrode (anode):
Positive electrode (cathode):
7b. [1 mark]
Calculate the cell potential, E^{θ} , in V, using section 24 of the data booklet.
- 17
7c. [1 mark]
Suggest how PEM fuel cells can be used to produce a larger voltage than that calculated in (b)(i).

Suggest	an a	dvan	tage (of the	PEM f	uel cell	l over tl	he lead-	acid ba	ttery for	use in c	ars

8a. [2 marks]

E10 is composed of 10% ethanol and 90% normal unleaded fuel.

Ethanol can be used in a direct-ethanol fuel cell (DEFC) as illustrated by the flow chart.

Deduce the half-equations occurring at electrodes A and B.

Electrode A:

Electrode B:

8b. [2 marks]
State the name and function of \mathbf{X} in the diagram in (b)(i).
Name:
Function:
8c. [1 mark]
Outline why aqueous ethanol, rather than pure ethanol, is used in a DEFC.

9a. [3 marks]
Electricity can be generated in a variety of ways.
Outline how a microbial fuel cell produces an electric current from glucose.
$C_6H_{12}O_6$ (aq) + $6O_2$ (g) \rightarrow $6CO_2$ (g) + $6H_2O$ (l)
9b. [2 marks]
The cell potential for the spontaneous reaction when standard magnesium and silver half-cells are connected is ± 3.17 V.
Determine the cell potential at 298 K when:
$[Mg^{2+}] = 0.0500 \text{ mol dm}^{-3}$ $[Ag^{+}] = 0.100 \text{ mol dm}^{-3}$
Use sections 1 and 2 of the data booklet.

9c. [1 mark]	
Outline one difference between a primary and a secondary cell.	