
Building and Distributing the Flutter
Preview Device
fujino@
Initially written 11/9/23
go/flutter-preview-device-distribution

Summary
With the majority of the engineering work for the Flutter Preview device finished (#130277), the
last outstanding task is to actually build the artifact on CI and make it available to end users.
This document outlines our options for when and how to build and publish the artifact, and for
how the tool will cache it.

The recommended option is to build the artifact from the engine tree only on release branches,
uploading it the same way the other engine artifacts are, which will not require setting up new
cloud storage infrastructure but also ensure users who flutter upgrade or delete their cache can
re-download the artifact.

Updated: the recommended option is to build the device during packaging, but also upload it to
cloud storage independently, namespaced by framework commit.

Background
The design doc for this project is at The 5 Minute Quick Start. TL;DR the Flutter Preview device
is a pre-built debug Flutter desktop application that will be distributed with the Flutter SDK, and
allow users to experience the hot reload workflow without needing to install a native build
toolchain.

For the initial minimum viable product, the preview will only be available for Windows, but if that
is successful macOS and Linux would be added.

The code to build the preview device is simply a hidden flutter tool sub-command: flutter
build _preview (//flutter_tools/lib/src/commands/build_preview.dart). This command
essentially just does:

flutter create flutter_preview

cd flutter_preview

flutter build –debug windows

cp build/windows/x64/runner/Debug/flutter_preview.exe

http://go/flutter-preview-device-distribution
https://github.com/flutter/flutter/issues/130277
https://docs.google.com/document/d/1LxoV58G4Ssa46k_o7Sb6Um2guPrXO2j3uJSE-I6kR4E/edit#heading=h.2oks5y5zi4nb
https://github.com/flutter/flutter/blob/master/packages/flutter_tools/lib/src/commands/build_preview.dart

$FLUTTER_ROOT/bin/cache/artifacts/flutter_preview

This code is tested on every commit in
//flutter_tools/test/integration.shard/build_preview_test.dart. This integration test builds the
device and verifies it, however it does not upload this artifact for the reasons outlined in the cons
of option 2 below.

Options

Option 1: Build and publish from the engine tree (preferred)
On release candidate branches, add a new step to the windows host engine (which includes
desktop engine artifacts) builder phase of the engine repo CI, that would clone the framework
from the matching release candidate branch, and the preview device would be built with the
local engine artifacts. They would then be uploaded like any other engine artifact.

The tool would need to be updated to download the artifact from cloud storage (currently it will
use the artifact if it is present in the cache, else treat it as unavailable) if and only if the user is
on a release branch.

Pros:

1.​ Users with existing Flutter SDK installations who get a new version via flutter
upgrade can use the corresponding build of the preview device.

2.​ Users who delete their Flutter cache (because a stack overflow post suggested it as a
bug workaround) will be able to re-download the preview device.

Cons:

1.​ Need to add Flutter preview-specific code to the engine repo
2.​ Added complexity on the engine CI side, as the script to build the preview device would

need to clone the tool code from the framework's corresponding release candidate
branch, and then use local engine artifacts from the current engine commit

Option 2: Build and publish within the release packaging phase
While packaging the Flutter SDK zip archives that are distributed through flutter.dev, we run the
command flutter build _preview, so that the Flutter cache that is distributed to users
includes the preview device. The tool will only list the preview device as being available if it is
actually present on disk in the cache. There is no mechanism for downloading it (the user could
theoretically run flutter build _preview themselves, but this would require the full desktop
toolchain, defeating the purpose of the preview device).

Pros:

https://github.com/flutter/flutter/blob/master/packages/flutter_tools/test/integration.shard/build_preview_test.dart

1.​ This is the simplest solution, just requiring a few lines being added to
https://github.com/flutter/flutter/blob/master/dev/bots/prepare_package.dart#L527

Cons:
1.​ If the user changes their Flutter version, they can no longer use the preview device
2.​ If the user deletes their Flutter cache, they can no longer use the preview device

Option 3: Build and publish from the framework tree
During framework post-submit CI, we build and upload the artifact to cloud storage,
namespaced by the framework commit. The tool would be updated to download the binary from
cloud storage.

Pros:

1.​ The entire implementation of the Flutter Preview feature would be in a single repository
Cons:

1.​ We would need to implement new infrastructure publishing artifacts from the Flutter repo
2.​ We would need to ensure that packaging builds for releases do not begin until publishing

the preview artifact was finished (today, the existence of the target framework commit is
enough to signal packaging can begin).

Option 4: Build within the packaging phase, publish separately
from the package (preferred)
This is like option 2, except instead of solely relying on user's getting the preview device already
in their cache by downloading the SDK from their website, we would, from the packaging script,
publish the preview device to cloud storage.

Pros:

1.​ All the pros from Option 1
2.​ None of the cons from Option 2

Cons:

1.​ We would need to figure out where to upload the preview device, as there is no
precedent for uploading artifacts associated with a framework commit.

The release package zips are namespaced like:
https://storage.googleapis.com/flutter_infra_release/releases/$CHANNEL/$PLATF

ORM/flutter_$PLATFORM_$TAG-$CHANNEL.tar.xz (source). While we could reconstruct this
path from the tool by inspecting the git branch and the git tag, this would be brittle and easily
broken by anomalies in the git state from release bugs.

https://github.com/flutter/flutter/blob/master/dev/bots/prepare_package.dart#L703

I would recommend creating a new directory in cloud storage for storing artifacts namespaced
by framework commit (which can be more reliably identified by the tool), such as
https://storage.googleapis.com/flutter_infra_release/framework_artifacts/$REV

ISION/flutter_preview.zip.

	Building and Distributing the Flutter Preview Device
	Summary
	Background
	Options
	Option 1: Build and publish from the engine tree (preferred)
	Option 2: Build and publish within the release packaging phase
	Option 3: Build and publish from the framework tree
	Option 4: Build within the packaging phase, publish separately from the package (preferred)

