使用熱量法進行酸鹼滴定與中和反應焓變的測定

目標

- 1. 使用1.0M氫氯酸溶液通過熱量法測定氫氧化鈉溶液的濃度。
- 2. 計算氫氧化鈉與氫氯酸的中和焓變 (ΔH_{ph}) 。

背景

本實驗涉及兩種熱量法:

- 1. 將不同體積比例的酸和鹼混合, 記錄其溫度變化;
- 2. 記錄酸鹼滴定過程中的溫度變化。

NaOH(aq)與HCl(aq)的中和反應是放熱反應,故混合溶液溫度會上升,混合的溶液達到最高溫度時即表示酸鹼中和反應達到終點。透過中和反應的化學計量學,我們可以利用達到終點所使用的HCl(aq)體積來計算NaOH(aq)的濃度。

同時,透過找出中和反應達到終點時所上升的溫度,並已知溶液的比熱容和質量(假設混合溶液的密度與水的相若),可以計算酸鹼中和反應釋放的熱量。把其熱量除以生成的水的摩爾數,便能計算該反應的中和焓變 (ΔH_{tran})。

本實驗不僅對NaOH(aq)濃度進行定量測量,亦可讓學生了解中和反應的熱化學特性,尤其是焓變,這正是化學反應的重要特徵之一。本次實驗將對兩種熱量方法的優點及缺點進行比較和討論。

相關課題

● 課題四 酸與鹼

● 課題八 化學反應與能量

• 課題十五 分析化學

安全措施

- 進行實驗時必須佩戴安全護目鏡和實驗袍。
- 避免直接接觸HCl(aq)和NaOH(aq)。如有皮膚接觸,立即用水沖洗。

儀器和化學品

- 聚苯乙烯杯 x 7 (帶蓋)
- 50 cm³量筒 x 5
- 滴定管
- 25.00 cm³ 移液管
- 移液管膠泵

- 1.00 M 氫氯酸(250 cm³)
 - 氫氧化鈉溶液(未知濃度)
 - 蒸餾水
 - 過濾漏斗
 - 電子溫度計

實驗步驟

方法1:

1. 根據下表,使用量筒測量溶液的體積並將NaOH(aq)先加入不同的聚苯乙烯杯中。

設置	A	В	С	D	Е	F	G
HCl(aq)體積 / cm³	10	15	20	25	30	35	40
NaOH(aq)體積 / cm³	40	35	30	25	20	15	10

2. 對於設置A,將電子溫度計插入蓋子/聚苯乙烯板的小孔,並將其蓋於盛有NaOH(aq)的聚苯乙烯杯上(見圖1)。測量並記錄NaOH(aq)的溫度。

(圖1)

- 3. 使用另一個量筒測量10 cm³ HCl(aq)並加入裝有NaOH的聚苯乙烯杯中。混合後蓋上蓋子/聚苯乙烯板。
- 4. 測量混合溶液的最高溫度並記錄在表1中。
- 5. 根據步驟1中的設置組合, 重複步驟2至4, 完成設置B至G。
- 6. 使用表1中記錄的數據, 繪製圖表以測定中和反應的終點, 從而計算NaOH(aq)的濃度。
- 7. 從圖表中找出中和反應終點的溫度升幅,並計算中和反應的焓變(kJ mol⁻¹)。

方法2:

1. 用移液管移取25.00 cm³ NaOH(aq)至聚苯乙烯杯中。使用帶有兩個小孔的蓋子/聚苯乙烯 板蓋在聚苯乙烯杯上。將電子溫度計插入其中一個小孔(見圖2)。

(圖2)

- 2. 使用溫度計測量NaOH(aq)的初始溫度並記錄在表2中。
- 3. 將50 cm³ HCl(aq)加入滴定管。將滴定管放置在聚苯乙烯杯上方,並將其噴嘴插入蓋子/聚苯乙烯板的孔中(見圖2)。
- 4. 從滴定管中加入2 cm³ HCl(aq)至盛有NaOH(aq)的聚苯乙烯杯中。
- 5. 將溶液完全混合。測量混合物達到的最高溫度,並記錄在表2中。
- 6. 繼續以2 cm³ HCl(aq)為單位逐份加入至聚苯乙烯杯中。每次加入後,將溶液完全混合並測量溫度上升時的最高溫度(或溫度下降時的最低溫度)。將這些溫度記錄在表2中。
- 7. 重複步驟6, 直到加入共40 cm³ HCl(aq)。
- 8. 使用表2中記錄的數據, 繪製圖表以測定中和反應的終點, 從而計算NaOH(aq)的濃度。
- 9. 從圖表中找出中和反應终點的溫度變化,並計算中和反應的焓變(kJ mol⁻¹)。

結果與數據分析

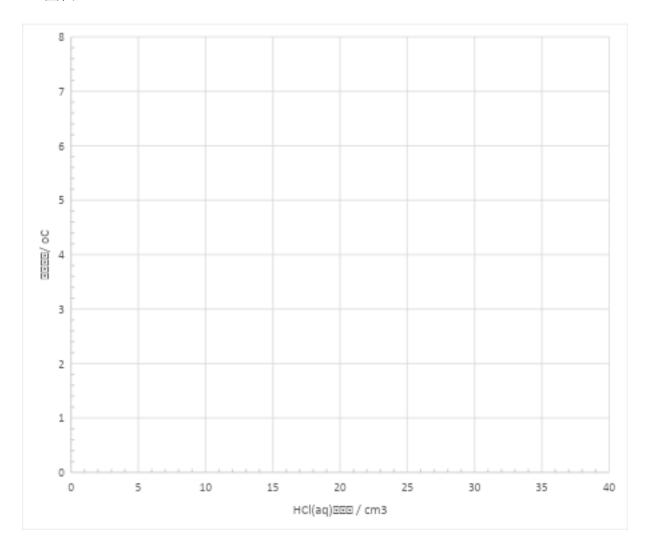

方法1:

表1

設置	A	В	С	D	Е	F	G
HCl(aq)的體積 / cm³	10	15	20	25	30	35	40
NaOH(aq)的體積 / cm³	40	35	30	25	20	15	10
NaOH(aq)的起始溫度 / ℃							
混合溶液達到的最高溫度 / ℃							
溫度變化/℃							

1. 使用表1中記錄的數據,繪製坐標圖以確定中和NaOH(aq)所需的HCl(aq)體積。

圖表1:

		- 1 1.1.	2.2 S.II. L.
2	根據圖表1,	計 管 No O U	
4.	(X))家凹(XI)	ロ	au 川ソ(辰/文。

3. 找出HCl(aq)與NaOH(aq)中和反應終點的溫度升幅,從而計算中和反應的焓變。

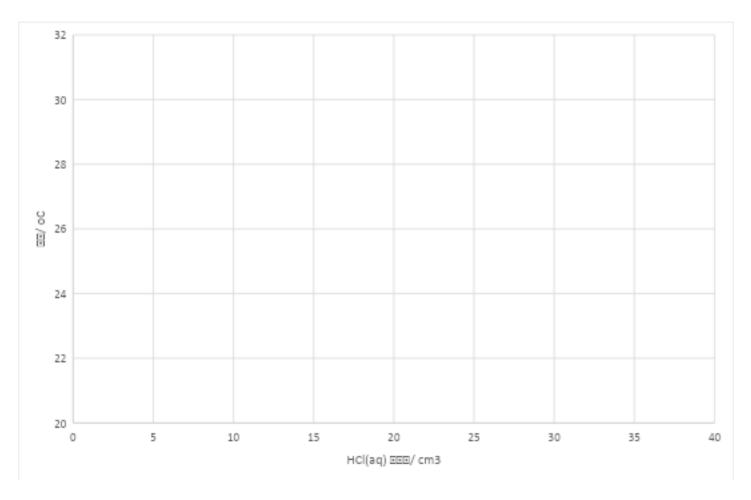

方法2:

表2

HCl(aq)的體積/ cm³	0.0	2.0	4.0	6.0	8.0	10.0	12.0
*混合溶液的最高(或最低)溫度/℃							
HCl(aq)的體積/cm³	14.0	16.0	18.0	20.0	22.0	24.0	26.0
*混合溶液的最高(或最低)溫度/℃							
HCl(aq)的體積/cm³	28.0	30.0	32.0	34.0	36.0	38.0	40.0
*混合溶液的最高(或最低)溫度/℃							

^{*}當溫度上升時, 記錄混合物的最高溫度;當溫度下降時, 記錄混合物的最低溫度。

4. 使用表2中記錄的數據, 繪製坐標圖以測定完全中和NaOH(aq)所需的HCl(aq)體積。 圖表2:

5. 根據圖表2, 計算NaOH(aq)的濃度。

6. 找出HCl(aq)與NaOH(aq)中和反應終點的溫度變化,從而計算中和反應的焓變。

討論	
1.	計算中和反應焓變時應作出哪些假設?
2.	比較並評論方法1和方法2的結果。(已知NaOH(aq)的準確濃度為0.85M, 強酸與強鹼反應的標準中和焓變為-57.62 kJ mol ⁻¹)
3.	分別說明方法1和方法2在測定NaOH(aq)濃度方面的優勢。