
Functional Programming
Imperative programs:

●​ Write values to data structures.
●​ Because the order of writes matters, the order of statements matters. Hidden side effects make

program difficult to write and modify. Write reordering can give different answers, so there are
serial dependencies in the code.

Functional programs:

●​ Evaluate "pure" expressions without side effects, like mathematics.
●​ Because the order of evaluation does not matter, implementations can use lazy evaluation, or

parallel evaluation. The lack of side effects makes code more modular, more reliable, and easier
to run in parallel, understand, and modify.

●​ Often use "higher-order functions": functions that take other functions as arguments. Type
declarations involving functions tend to rapidly get unwieldy (e.g., recursive function taking itself
as an argument), so functional programming languages normally use type inference (OCaml,
Haskell, C++11 templates or auto) or dynamic typing (JavaScript, Erlang).

"Functional programming combines the flexibility and power of abstract mathematics
 with the intuitive clarity of abstract mathematics."
​ - Randall Munroe, XKCD #1270 alt text

Functional Programming

Compact Lambda Calculus
Functional Programming in Python
Functional Programming in JavaScript
Functional Programming in C++
Functional Programming in Haskell
Homework
Appendix: Tromp Diagrams
Appendix: Interaction Calculus

Grok-3 generation:

See what Haskell programmers think functional programming means.

The functional style can be used in any language--even assembly--by ensuring functions do not have side
effects. Several key abstractions like Zippers are useful in any language.

https://ocaml.org/learn/tutorials/structure_of_ocaml_programs.html
https://www.w3schools.com/js/
http://learnyousomeerlang.com/types-or-lack-thereof
https://xkcd.com/1270/
https://wiki.haskell.org/Functional_programming
https://en.wikipedia.org/wiki/Zipper_(data_structure)

Drawbacks of the functional style include a mismatch with real-world I/O operations such as writing
bytes to the network or serial port, or splatting pixels on the screen. It is also more complex to create
functional (read-only) data structures (see readable summary of this and later functional data structures).

(Illustration of Lambda calculus as being like alien technology.)

http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

Compact Lambda Calculus
In 1932 Alonzo Church discovered lambda calculus, a powerful functional representation that is
mathematically fascinating but not easily understood. (Examples, which are most easily read with a Greek
alphabet cheat sheet.)

In analyzing theoretical computation, we need a very simple model of computation, so we often use a
Turing machine. In mathematics we need a very simple model of functions, so we normally use lambda
calculus (readable intro to lambda calculus for C++ programmers) which uses simple single-variable
replacement, a simpler structure that makes for very simple proofs.

Everyone seems to use a slightly different syntax for defining and applying lambda calculus functions.
Here we're defining a function F that takes one argument x, and calls the function G with it.

Source Anonymous Function Notation

1932 Alonzo Church paper F: λ x . [G x]

Haskell F = \x -> G x

Python F = lambda x: G(x)

JavaScript F = x => G(x)

C++ auto F=[](auto x) { return G(x); };

English text Define a function as taking some arguments,

and doing some work on them.

Functional programming
term

Lambda calculus Python Description

Lambda abstraction λ x . [_] lambda x: _ Define a function.

Function application
(apply the function G to
the value x)

G x G(x) Call (apply) a function with an
argument.

(Beta) β-reduction (λ x . x) F
 = F

Run the function Run a function

https://www.jstor.org/stable/pdf/1968337.pdf
https://plato.stanford.edu/entries/church/supplementD.html
https://cdn.bencrowder.net/downloads/lang/GreekAlphabet.pdf
https://cdn.bencrowder.net/downloads/lang/GreekAlphabet.pdf
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lambda_calculus
https://yongweiwu.wordpress.com/2014/12/14/y-combinator-and-cplusplus/
https://www.jstor.org/stable/pdf/1968337.pdf
https://wiki.haskell.org/Anonymous_function

Functional Programming in Python
Python functions normally use the "def" keyword:

def dadd(a,b):

 return a+b

dadd(3,10)

13

Python also supports the keyword "lambda" that creates a function taking a list of arguments, like
"lambda arguments: body":

fadd = lambda a,b: a+b

fadd(3,10)

Result: 13

"Currying" is the conversion of multi-argument functions into a chain of nested simpler single-argument
functions that give the same result. Lambda expressions support currying more naturally than
multi-argument functions, and they give the opportunity for higher-order programming such as only
binding one of the arguments now and saving the other for later.

cadd = lambda a: lambda b: a+b

cadd(3)(10)

Result: 13

The terse lambda syntax above is equivalent to defining cadd as an outer function that takes a, with an
inner function that takes b:

def cadd2(a):

 def innerC(b):

 return a+b

 return innerC

cadd2(3)(10)

Result: 13

Key to functional programming: you can pass functions as arguments to other functions, or return a
function instead of a value:

bindleft = lambda f: lambda L: f(L)

add3 = bindleft(cadd)(3)

add3(10)

Result: 13

It's common to use nested functions in functional programming, which is the easiest way to do things like
arbitrary nesting. For example, this function takes N curried arguments, and adds them all together:

https://en.wikipedia.org/wiki/Currying

Add up the next n curried arguments

def addN(n):

 sum=0

 def inner(next):

 nonlocal sum # access parent's sum

 sum = sum+next

 nonlocal n # access parent's n

 n=n-1

 if n==0:

 return sum # done

 else:

 return inner # more coming!

 return inner

addN(3)(1)(5)(10)

Result: 16

The most natural way to write recursive functions in a pure functional language is by passing the name of
the function to itself as an argument(!), so the function can call itself. Here's the Fibonacci sequence:

fib=lambda f: lambda i: i if (i<2) else f(f)(i-1)+f(f)(i-2)

fib(fib)(6)

Result: 8

This fibonacci is purely functional, but it's a little clunky to call because we need to call fib(fib). Luckily,
you can define a simple higher-order function called the "U combinator" to fix the call side:

U = lambda f: f(f)

fibEasy = U(fib)

fibEasy(6)

Result: 8

It's still a little clunky to define fib, because to express the recursion, we have to call f(f)(i-1). You can fix
this with a fixed-point combinator like the famous Y combinator (not the company).

Y = lambda F: F(lambda x:Y(F)(x))

fibY = lambda f: lambda i: i if (i<2) else f(i-1) + f(i-2)

fibEasier = Y(fibY)

fibEasier(6)

Result: 8

This Python intro to Lambda Calculus builds up all of computation from nothing but functions, and
includes the Y combinator definition above. This is an intellectually bracing exercise, and excellent
practice with the founding ideas in functional programming, even if it's poor for writing actual programs!

Here's our 2024 attempt at Python lambda calculus.

https://en.wikipedia.org/wiki/Fibonacci_sequence
https://en.wikipedia.org/wiki/Fixed-point_combinator
http://matt.might.net/articles/python-church-y-combinator/
https://docs.google.com/document/d/1CC_yhvGdcs24ICXG8np3PxhYMOsg96ZD7DkHdrMC_LA/edit

Once you're comfortable with those, Stephen Wolfram's The Ruliology of Lambdas has some interesting
observations.

Functional Programming in JavaScript
JavaScript makes heavy use of functional programming ideas in the 'callbacks' used in every network
access. This means you may need to do fairly heavy functional programming for normal tasks like
fetching a list of network files–your callback after getting each file needs to use itself as a (recursive)
callback when it grabs the next file, which continues until a network error or the end of the list. (Today
you can finally do this with a normal loop, using the async await syntax, but there are still some
advantages to doing it via functional programming recursion.)

JavaScript supports a terse "argument => body" syntax for declaring anonymous functions:

f = (a,b) => a+b
print(f(3,10));

(Try this in NetRun now!)

JavaScript also lets you declare inner functions anywhere, and they can directly access local variables of
any of their parent functions.

function f(a,b) {​
​ var x=function(c) { // declare inner function​
​ ​ return a+c; // access parent function's variable​
​ }​
​ return x(b);​
}​
print(f(3,7));​

(Try this in NetRun now!)

In the terse style, this inner function can just be a parenthesized subexpression:

f = (a,b) => (c => a+c) (b)
print(f(3,10));

(Try this in NetRun now!)

JavaScript also has first-class functions: you can pass functions as arguments, as used for callbacks in
many APIs. Here's how we'd pass a function itself as an argument, here for simple recursion:

https://writings.stephenwolfram.com/2025/09/the-ruliology-of-lambdas/
https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=f%20%3D%20%28a%2Cb%29%20%3D%3E%20a%2Bb%0D%0Aprint%28f%283%2C10%29%29%3B%0D%0A&lang=JavaScript&mach=threadripper&mode=frag&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings
https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=function%20f%28a%2Cb%29%20%7B%0D%0A%09x%3Dfunction%28c%29%20%7B%20%2F%2F%20declare%20inner%20function%0D%0A%09%09return%20a%2Bc%3B%20%2F%2F%20access%20parent%20function%27s%20variable%0D%0A%09%7D%0D%0A%09return%20x%28b%29%3B%0D%0A%7D%0D%0Aprint%28f%283%2C7%29%29%3B%0D%0A&lang=JavaScript&mach=x64&mode=frag&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings
https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=f%20%3D%20%28a%2Cb%29%20%3D%3E%20%28%20c%20%3D%3E%20a%2Bc%20%29%20%28b%29%0D%0Aprint%28f%283%2C10%29%29%3B%0D%0A&lang=JavaScript&mach=threadripper&mode=frag&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings

var fib=function(recurse,i) {​
​ if (i<2) return i;​
​ else return recurse(recurse,i-1) + recurse(recurse,i-2);​
}​
print(fib(fib,6));​

(Try this in NetRun now!)

It's a bit clunky to pass the function name twice, so we might write a "higher order" function that takes as
an argument the function that needs itself as an argument:
 var heal_recursion=function(f,arg) { return f(f,arg); }
This looks a little better if you curry the arguments into separate functions:
 var curry_recursion=function(f) {
 return function(arg) { return f(f,arg); }
 }
You'd use this like:
 var f=curry_recursion(fib);
 return f(10);

One place you might use this stuff is in building read-only data structures:

function no_students(s) { return false; };​
function add_student(next_student,old_students) {​
​ return function (s) {​
​ ​ if (s==next_student) return true;​
​ ​ else return old_students(s);​
​ }​
};​
​

function is_student() {​
​ return add_student("A",add_student("B",no_students));​
};​
​

print(is_student()("A"));
(Try this in NetRun now!)

https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=var%20fib%3Dfunction%28recurse%2Ci%29%20%7B%0D%0A%09if%20%28i%3C2%29%20return%20i%3B%0D%0A%09else%20return%20recurse%28recurse%2Ci-1%29%20%2B%20recurse%28recurse%2Ci-2%29%3B%0D%0A%7D%0D%0Aprint%28fib%28fib%2C6%29%29%3B%0D%0A&lang=JavaScript&mach=x64&mode=frag&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings
https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=function%20no_students%28s%29%20%7B%20return%20%22errno%22%3B%20%7D%3B%0D%0Afunction%20add_student%28next_student%2Cold_students%29%20%7B%0D%0A%09return%20function%20%28s%29%20%7B%0D%0A%09%09if%20%28s%3D%3Dnext_student%29%20return%20true%3B%0D%0A%09%09else%20return%20old_students%28s%29%3B%0D%0A%09%7D%0D%0A%7D%3B%0D%0A%0D%0Afunction%20is_student%28%29%20%7B%0D%0A%09return%20add_student%28%22ben%22%2Cadd_student%28%22aven%22%2Cno_students%29%29%3B%0D%0A%7D%3B%0D%0A%0D%0Aprint%28is_student%28%29%28%22ben%22%29%29%3B&lang=JavaScript&mach=x64&mode=frag&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings

/* Make a new function that represents a tree of data.​
 left and right can be data or functions. ​
 Returns a node function that can be visited.​
*/​
var tree_node=function (left,right) {​
 return function (visit) {​
 if (left) { visit(left); }​
 if (right) { visit(right); }​
 }​
};​
​

/* Visit a tree node */​
var visit=function(node) {​
 if (typeof node == "function") ​
 node(visit);​
 else​
 console.log(node);​
};​
​

var tree = tree_node(123,tree_node("hello","madness"));​
​

visit(tree);​

(Try this in NetRun now!)

I wrote a walkthrough of lambda calculus in JavaScript.

Functional Programming in C++
See several functional approaches to C++.

One big limitation of statically typed languages like C++ is it's difficult to express recursive higher order
functions: this direct translation of the javascript above works fine right up until you try to call it--the
specialization we want is fib<typeof(fib<typeof(fib… forever!

https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=%2F%2A%20Make%20a%20new%20function%20that%20represents%20a%20tree%20of%20data.%0D%0A%20%20%20%20left%20and%20right%20can%20be%20data%20or%20functions.%20%0D%0A%20%20Returns%20a%20node%20function%20that%20can%20be%20visited.%0D%0A%2A%2F%0D%0Avar%20tree_node%3Dfunction%20%28left%2Cright%29%20%7B%0D%0A%20%20return%20function%20%28visit%29%20%7B%0D%0A%20%20%20if%20%28left%29%20%7B%20visit%28left%29%3B%20%7D%0D%0A%20%20%20if%20%28right%29%20%7B%20visit%28right%29%3B%20%7D%0D%0A%20%20%7D%0D%0A%7D%3B%0D%0A%0D%0A%2F%2A%20Visit%20a%20tree%20node%20%2A%2F%0D%0Avar%20visit%3Dfunction%28node%29%20%7B%0D%0A%20%20if%20%28typeof%20node%20%3D%3D%20%22function%22%29%20%0D%0A%20%20%20%20node%28visit%29%3B%0D%0A%20%20else%0D%0A%20%20%20%20console.log%28node%29%3B%0D%0A%7D%3B%0D%0A%0D%0Avar%20tree%20%3D%20tree_node%28123%2Ctree_node%28%22hello%22%2C%22madness%22%29%29%3B%0D%0A%0D%0Avisit%28tree%29%3B%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A%0D%0A&lang=JavaScript&mach=skylake64&mode=file&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings
https://docs.google.com/document/d/1UU65M3UmETSEBVkOZyWzRvtgC9xx2B-3K4X8veog5qA/edit
https://dun.gs/2015/04/17/simple-higher-order-functions.html

template <typename FN>​
long fib(FN recurse,long i) ​
{​
​ if (i<2) return i;​
​ else return recurse(recurse,i);​
}​
​
long foo(void) ​
{​
​ return fib(fib,6);​
}​

(Try this in NetRun now!)

There is a pre-C++11 solution to this, (the fixed point combinator) but the types get really ugly. In
C++14, lambdas can take an "auto" parameter for calling themselves, and it's much more natural:

auto f=[](auto self,int i) {

 if (i<=1) return 1;

 else return i*self(self,i-1);

};

Functional Programming in Haskell
Haskell is nearly unique in being a "pure" functional language: most primarily functional languages such
as OCaml allow imperative code blocks.

https://tryhaskell.org/

The syntax is very compact and purely functional.

main = putStrLn "Hello"

The above defines the main function as an application of the print function "putStrLn" to a string.

main = (\x -> putStrLn x) "Hello"

This defines an anonymous lambda that takes an argument x, then applies the lambda to the string.

main = (\f -> (\x -> f x) "Hello") putStrLn

This defines two nested lambdas. The string gets applied first, and we bring in the function later.
(Parenthesis are critical here, because space will apply arguments it's easy to apply the wrong thing,
which will fail type check.)

https://lawlor.cs.uaf.edu/netrun/run?name=Testing&code=template%20%3Ctypename%20FN%3E%0D%0Along%20fib%28FN%20recurse%2Clong%20i%29%20%0D%0A%7B%0D%0A%09if%20%28i%3C2%29%20return%20i%3B%0D%0A%09else%20return%20recurse%28recurse%2Ci%29%3B%0D%0A%7D%0D%0A%0D%0Along%20foo%28void%29%20%0D%0A%7B%0D%0A%09return%20fib%28fib%2C6%29%3B%0D%0A%7D%0D%0A&lang=C%2B%2B&mach=x64&mode=file&input=&linkwith=&foo_ret=long&foo_arg0=void&orun=Run&orun=Grade&ocompile=Optimize&ocompile=Warnings
http://rosettacode.org/wiki/Y_combinator#C.2B.2B
https://en.wikipedia.org/wiki/Fixed-point_combinator
https://tryhaskell.org/

Monads in Disguise
There's an abstraction used for state in functional programming called a "monad", taken from category
theory. The main utility with monads is being able to rearrange and reason about code with side effects.
(Think about a complex program with global variables, it can be difficult to rearrange function calls
without breaking the global variables.)

"For a monad m, a value of type m a represents having access to a value of type a within the context of
the monad." —C. A. McCann

The two operations in a Monad interface are:

●​ wrap: bring a value into a monad.
○​ In Haskell, this is the "return" operation.

●​ bind: call a function on the monad value, effectively changing it.
○​ In Haskell, this is the bind operator ">>=", which is basically just function application but

for monads.

Many stateful things like data structures have a natural representation as monads.

Stateful Thing Monad operations Description

Variable wrap: declare the variable
bind: change the variable

Wrap brings a plain value into a monad
context. Bind changes the variable's value
(usually written with operators).

JavaScript Promise wrap: Promise.resolve
bind: .then()

Wrap is how you bring a raw value into the
Promise. Bind is how we chain additional
things onto the promise.

Rust Option wrap: Some(x) or None
bind: map

Wrap creates an Option type. map applies
a function *if* there is a value inside.

The three Monad laws are:

●​ Left identity: wrap and then bind is equivalent to just calling the function.
○​ In Haskell: (return a) >>= f == f a
○​ Here a is any value, and f is a function that takes a as input.
○​ (return a) wraps a
○​ >>= f binds f
○​ The combination is equivalent to just f applied to a

●​ Right identity: binding wrap does nothing.
○​ In Haskell: (m >>= return) == m

●​ Associativity: binding functions can happen in either order.
○​ In Haskell: (m >>= f) >>= g == m >>= (\x -> f x >>= g)
○​ Left side: start with m, bind f, then bind g.

https://en.wikipedia.org/wiki/Monad_(functional_programming)

○​ Right side: start with m, bind a lambda that first applies f, then binds g.

Homework
"Currying" is the conversion of multi-argument functions into a chain of simpler single-argument
functions that give the same result.
 Write a Python function curry2 that takes a single argument: a function, that in turn takes two
arguments. Curry2 should return a chain of higher-order functions that take one argument at a time. For
example, curry2(f)(a)(b) should give the same result as f(a,b).
 Now write a Python or Javascript function curryN that takes the number of arguments to curry. For
example, curryN(f,2)(a)(b) should give the same result as f(a,b).

●​ In Python you can call a function with N arguments in a [] list with a star syntax
●​ In JavaScript you can call a function with an array of arguments using fn.apply(fn,argArray) , or

set each parameter one at a time using fn.bind(fn,firstArg)

Appendix: Tromp Diagrams
If you don't find functional programs easy to understand as text (and I don't), then this video shows John
Tromp's visual lambda calculus notation. (Sadly, I still don't find these easy to understand as diagrams!)

Lucas Suss's annotated lambda diagrams at least have readable labels, although they're rotated 90 degrees
relative to Tromp diagrams to give space for the labels.

Justine Tunney wrote a ridiculously compact lambda calculus interpreter (a 383 *byte* executable) with
some highly compressed but very opaque programs.

https://en.wikipedia.org/wiki/Currying
https://stackoverflow.com/questions/817087/call-a-function-with-argument-list-in-python
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://www.youtube.com/watch?v=RcVA8Nj6HEo
https://www.youtube.com/watch?v=RcVA8Nj6HEo
http://apm.bplaced.net/w/index.php?title=Annotated_lambda_diagram
https://justine.lol/lambda/

	Functional Programming
	Compact Lambda Calculus
	Functional Programming in Python
	Functional Programming in JavaScript

	function f(a,b) {​​var x=function(c) { // declare inner function​​​return a+c; // access parent function's variable​​}​​return x(b);​}​print(f(3,7));​
	var fib=function(recurse,i) {​​if (i<2) return i;​​else return recurse(recurse,i-1) + recurse(recurse,i-2);​}​print(fib(fib,6));​
	 var heal_recursion=function(f,arg) { return f(f,arg); }
	 var curry_recursion=function(f) {
	 return function(arg) { return f(f,arg); }
	 }
	 var f=curry_recursion(fib);
	 return f(10);
	function no_students(s) { return false; };​function add_student(next_student,old_students) {​​return function (s) {​​​if (s==next_student) return true;​​​else return old_students(s);​​}​};​​function is_student() {​​return add_student("A",add_student("B",no_students));​};​​print(is_student()("A"));
	/* Make a new function that represents a tree of data.​ left and right can be data or functions. ​ Returns a node function that can be visited.​*/​var tree_node=function (left,right) {​ return function (visit) {​ if (left) { visit(left); }​ if (right) { visit(right); }​ }​};​​/* Visit a tree node */​var visit=function(node) {​ if (typeof node == "function") ​ node(visit);​ else​ console.log(node);​};​​var tree = tree_node(123,tree_node("hello","madness"));​​visit(tree);​
	Functional Programming in C++
	Functional Programming in Haskell
	Monads in Disguise
	Homework
	Appendix: Tromp Diagrams

