Name:		

Course: APBIO Teacher: Rozema

Period: 6

Unit 2: Surface Area + Volume Lab

Background:

Diffusion is the movement of a substance from an area of higher concentration to an area of lower concentration. While cells utilize a number of methods for transporting materials in and out of the cell (such as osmosis, facilitated diffusion, and active transport), diffusion requires no energy and no extra proteins or cell organelles. In other words, diffusion is a cheap (energy-wise) and efficient way for the cell to move stuff it has to move. Molecules like Oxygen Gas, Carbon Dioxide Gas, and Glucose can diffusion through the cell membrane with no energy cost to the cell.

We will be modeling the cell using cubes of agar (a gelatin-like substance from seaweed). The agar has been soaked in Bromothymol Blue (a pH indicator that turns yellow when the pH drops below 6.9). The cubes have been stored in 0.01% Sodium Hydroxide (a strong base), causing the cubes to have a deep blue color. We are going to soak our agar cubes in Vinegar (an acidic solution).

To add one extra piece to this lab, we will also be observing what happens to our agar cubes, if they are different sizes and/or shapes, to explore how the surface area of the cubes affects diffusion.

Materials:

- Agar
- Scalpels/Knife
- Rulers
- Gloves

- Vinegar
- Beakers
- Digital Scales
- Timers (Phones)
- White Paper

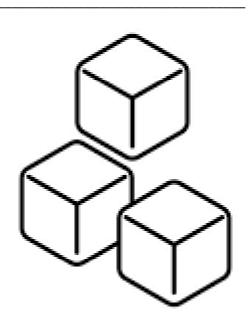
(Utilized only by teacher)

- Bromothymol Blue
- Agar Powder
- Graduated cylinder
- Distilled Water
- Whisk / Fork
- Large Beaker / Flask
- Hot Plate
- Glass Baking Pan / Silicone Ice Cube Trays

Set Up (Teacher):

- 1. Measure 1.6g of Agar.
- 2. Measure 200mL of Distilled Water.
- 3. Mix the Agar and Water together in a large beaker / flask
- 4. Heat the solution till boiling and remove.
- 5. Add a few drops of Bromothymol Blue to the Agar Solution. (The mixture should turn blue). *If it has a greenish hue, add Sodium Hydroxide / Ammonia a drop at a time till it turns blue.
- 6. Pour the Agar Solution into the ice-cube molds (or your small baking pan).
 *Make sure the agar blocks are at least 3cm deep when cooled and solidified.

(9) What is the equation for the Surface Area of a Cube?


7. Let the agar cool until solidified.

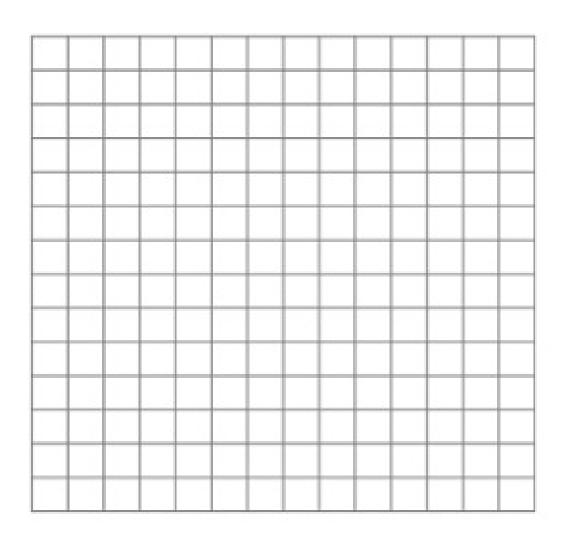
PART 1: Pre Lab Questions	
(1) What is Diffusion?	
(2) What will be diffusing in this lab?	
(3) Where will there initially be a HIGHER CONCENTRATION of our solution?	
(4) Where (initially) is there a LOWER CONCENTRATION of our solution?	
(5) What direction will our solution diffuse in?	
(6) What color will the agar jelly be initially?	
(7) What color will the agar jelly turn if it interacts with vinegar?	
(8) Visually, how will we know that our solution has diffused?	

(10)	What is the equation for the Volume of a Cube?
(11)	What is a Ratio?
(12)	How do you think the SIZE of the agar cube will affect the DIFFUSION RATE of the vinegar? Discuss.

Procedure (Students):

- 1. Place 1 Agar Cube in each Beaker / Cup.
- **2.** DO NOT ADD THE VINEGAR YET! BUT... You will pour enough Vinegar into each beaker, to completely cover each cube.
- 3. Do 1 cup / cube at a time.
- **4.** The moment you start pouring vinegar into a cup \rightarrow START TIMING!
- **5.** Once you see the ENTIRE CUBE change from BLUE TO PALE YELLOW \rightarrow STOP TIMING!
- **6.** Record the TOTAL TIME for each cube.

PART 2: Data Collection


Data	Agar Cube	Agar Cube	Agar Cube
Surface Area Calculation:			
Volume Calculation:			
Surface Area : Volume Ratio			
Initial Color:			
Total Time for Diffusion:			
Final Color:			
Diffusion Rate Calculation (cm³ / sec):			

PART 3: Graphing

Graph the Surface Area to Volume Ratio versus the Diffusion Rate of each Agar Cube below.

Make sure to include:

☐ Labels on both the X and Y Axes.	The same of		
☐ Units where relevant.		1	
☐ A Title for the graph.	1		
☐ Plot the points.			
☐ Draw a line of best fit through the data points.			
☐ Increments			

PART 4: Conclusion

an you make from				
organism, and how age of being a large	v that could affe er cell? What w	ect the organism's ould be the disac	ability to mainta	fusion Rate ain homeostasis. What a larger cell? How do