
Yocto Project Long Term Support (LTS) plan proposal

Current Position

The Yocto Project is very much in favour of having some form of extended support for certain
releases. The main reason this has not happened so has is due to resource constraints. We
currently struggle to keep stable releases maintained for their 1-2 year lifespan, the project is
therefore reluctant to committing to more work without resources to do it.

Background

Yocto project releases cadence is every six months (twice a year), as covered on the wiki
https://wiki.yoctoproject.org/wiki/Releases. Every release consists of:

●​ Major component upgrades
○​ Includes ABI/API changes
○​ Include major version upgrades
○​ New features

●​ Bug fixes reported to yocto project
●​ New yocto project tooling features

○​ Test infrastructure changes
○​ Automation changes

●​ New architectures added/removed

This works great for keeping a tighter integration loop with upstream.

Current Stable Releases

The project maintains stable releases for 1 year and then it moves to community support, see
https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance which receives no testing on AB
and occasional patches for really breaking things but no regular bug fixes and security updates.
No major ABI breaking patches are applied to stable releases. Occasional bug fix only version
bumps for packages are accepted after review. The current stable policy says that there are
acceptable and unacceptable changes:

Acceptable:

●​ Security and CVE fixes
●​ Fixes for bugs
●​ Fixes so codebase works with newly released distros
●​ Bug fix only version upgrades (especially where follows upstream policy)

https://wiki.yoctoproject.org/wiki/Releases
https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance

Unacceptable:
●​ General version upgrades
●​ New Features

Long Term Stable (LTS) for Yocto Project

There has been rising requirement and interest amongst the project’s members and its
end-users for supporting a given release for longer than what a stable release is maintained.
The following is a proposal for what the project could do with some thoughts on the specific
decisions the project would have to make to allow this to happen. There are specific choices
which would have to be made. Maintaining such an LTS will require resourcing and its likely that
the people providing the resourcing will have influence over the final choices.

Term
The term is not yet determined but in principle could be anywhere between 3-5 years, maybe
even longer, it ultimately depends on people being available to do the work. There are
downstream projects which are relying on Yocto project releases and has a longer life cycle but
are not using commercial OS Vendor solutions e.g. AGL, Microsoft Azure, RDK etc. They all are
following their own cadence of deploying a given version of Yocto project release and do not join
efforts since its completely driven by their own requirements. This would be an opportunity for
the project to converge these projects onto a LTS release and create a large enough developer
community to support a given LTS release.
Proposal: We start with a 3 year plan but this could extend if there was demand and support for
maintaining it. Would need dedicated commitment of resources at the start and later a
commitment to extend.

Picking an LTS
This is hard with many different viewpoints. The first decision is whether to choose an LTS in
advance or afterwards, elevating an existing stable release to LTS status. There are pros and
cons to both. As a point of reference, the kernel has tried both but settled on deciding in
advance.
Proposal: We pick and announce an LTS in advance as this stands a better chance of people
being able to align on it. This also allows the release to have focus on ensuring component
choices have better long term support where possible. This implies 3.1 is the first viable
candidate.

Policies within LTS
A key question is whether the LTS follows the usual stable policies. In particular, how to handle
the kernel versions in the LTS is a key question and could conflict with the “no upgrades” rule
usually applied to a stable series. Certainly, an LTS release will likely only maintain LTS kernels.
There is a possibility that multiple LTS kernels could exist in the project LTS release. For general

recipe upgrades we’d follow stable policy which allows them in limited circumstances where
upstream have a stable series or stable support model.
Whilst a “master first” policy is essential, for practicality not all stable intermediate releases may
receive updates the LTS gets.
Proposal: We initially support the LTS the original release shipped with. We’d evaluate other
similar vintage LTS kernels on a case by case basis depending on the status of upstream
support. We need to be aware of the impact on test matrix if additional kernel versions were
added and it would need to be resourced. The version of linux-libc-headers would not change to
avoid user-space problems.

How often would there be an LTS
Proposal: Initially aim for an LTS every 2 years as otherwise there would be too many LTS in
parallel. Ultimately it would depend on resourcing.

Components to be covered
The project components to be covered would need to match those included in our standard
release process and should be clearly defined. Those components would be:

●​ Bitbake
●​ OE-Core
●​ Meta-yocto
●​ yocto-docs

(no meta-mingw or meta-gplv2)
(no vendor layers)

Who makes the final decision
Proposal: The TSC is the ultimate decision making body but it would make a decision based on
community feedback, people committing resources and input from the member organisations.
​ ​ ​

LTS Maintainership

A LTS Maintainer is selected in the same manner as the Stable releases, i.e. the repo owner
has the call. There could be more than one person who has ownership of the LTS branch but
one may be identified as the point person. The Point person would be the one who handles
bugzilla ownership/queries, build, QA and backporting concerns.

The Yocto TSC would retain the QA test result review and release go/nogo decision for any
releases.

The LTS maintainer will be responsible in starting and monitoring builds. The Maintainer may
have assistance from the community in resolving new issues identified during build and or the
QA run.

Backport reviews will be sent to the mailing list for community review.
A merge request will be sent to the appropriate repo owner once all issues found during the
review have been addressed.

Infrastructure Needed

Whilst not immediately obvious and whilst well suited to testing current development, the current
autobuilder is not suited to building, maintaining and testing an LTS release. In particular the
autobuilder workers are multiple different distros (to get wide test coverage) running
“bare-metal” for performance. For security reasons we only have workers which are in current
support and have upgrade feeds available. We already struggle with the stable branches in this
area.

In order to support an LTS release for the project, we’d propose that new autobuilder software
infrastructure needs to be developed to support it. This could run on the same autobuilder
hardware but we’d propose that for LTS, only one host distro be used for testing, probably an
Ubuntu LTS because its easily available and has a long lifetime. This would most likely be in the
form of a container based worker and the specific distro used would be used throughout the
lifetime of the project LTS release. This would imply a worker/container combination per LTS
release.

Building such software infrastructure is definitely possible but also non-trivial and as such, the
work in setting it up needs to be included in any LTS plan.

An alternative could be to have a larger number of nodes running the chosen LTS distro and
limiting the LTS builds to those workers. This could have implications for the build/testing time of
the release. It could also have an impact on the availability of specialist processing workers
such as the native ARM one. Performance testing is another area which would have to be
carefully considered as the build time performance testing workers may not run the supported
LTS distro.

For simplicity, it is also proposed that only automated testing be used for testing the LTS and
that any current manual QA is not performed. The main reason for this is to streamline and
simplify the testing and release process to allow regular and frequent updates to the LTS
release without dependencies on external factors. Anyone can obviously perform their own
testing of the LTS releases in addition to this core automated testing.

Proposal:

●​ Follow the same testing process as the original release
●​ Only run virtualized tests
●​ Only support one host distro, an Ubuntu LTS as it has right lifespan

●​ Start by aiming to share the infrastructure meaning multiple LTS workers or LTS worker
containers depending on funding and implementation

●​ To share infrastructure this implies one autobuilder controller covering both potentially
complicating configuration changes for master (likely manageable)

Resource Requirements/Summary

The infrastructure requirements are easier to quantify and would likely consist of 2-3 additional
additional worker machines over time for the above proposal as the minimum cost.

The human resource element to track, test (using automation) and merge patches is harder to
quantify but at a rough guess, is probably 50% of a person’s time for the lifespan of the LTS.

This assumes that patches for various issues are forthcoming from others as its not realistic to
expect one maintainer to handle creation of the various patches needed. The quality of the LTS
will be directly related to the number of people working on the patches and them having the time
to be able to ensure the patches are of the needed quality.

Other Considerations
●​ Migration from one LTS to another
●​ Package compatibility from one LTS to another
●​ Should support subset of machines? Architectures?
●​ Prior Art Ubuntu: normal releases every six months (April and October), LTS every two

years (every other April). Details and cadence chart at
https://ubuntu.com/about/release-cycle.

●​ How we identify LTS releases (os-release, tags, wiki), pros and cons to changing
●​ If dynamic components such as go or rust are in core we may need a way to allow them

to change at a higher rate of change due to the nature of the languages. Likely this can
be done through an additional layer alongside the LTS to have the newer versions which
users can collaborate on together. LTS “mixin” layers?

https://ubuntu.com/about/release-cycle

	Term
	Picking an LTS
	Policies within LTS
	How often would there be an LTS
	Components to be covered
	Who makes the final decision

