
Computational Media
Project 01: Graphics and StdLib Setup
Marist School

Description:

In this class we will use Java, Eclipse, and Standard Library (stdlib.jar) from Princeton. The
combination of Java and the Standard Library will provide a platform for us to run programs that
use images and sound.

The Standard Library provides a wide array of tools for data visualization, statistics, and reading
/ writing various media files. The API for Standard Library can be found at:

https://introcs.cs.princeton.edu/java/stdlib/

In this assignment you will setup and test Eclipse, Java, and the stdlib.jar. Then you will code
several short examples to test and demonstrate the Standard Library. We will use StdLib and
some of the Princeton lessons later in the Term.

Process:

1. Download the stdlib.jar file from the Google Classroom or this link: stdlib.jar

2. Create a new Java Project in Eclipse and call it “Project01_GraphicsTest”

3. Expand the project hierarchy in the “Package Explorer” until you see the “src” folder.

1

https://introcs.cs.princeton.edu/java/stdlib/
https://nebomusic.net/javalessons/stdlib.jar

4. The stdlib.jar file should be in your Downloads folder. Copy stdlib.jar into the
Assignment00_LibraryTest folder.

5. We now need to add the stdlib.jar file to the build path of the project. Right click on
stdlib.jar and select “Build Path -> Add to Build Path”

2

6. With stdlib.jar on the build path, we will now create a Java class that will test features of
the library. Right click on the “src” folder and create a new Java class called
“GraphicsTester.java”. Add JavaDoc Comments as shown below:

7. We will now test the ability to read and display images. Find a small .jpg image file and place
it into the project root directory. You can use “bob_and_larry.jpg” from the Google Classroom as
a sample. (https://nebomusic.net/javalessons/bob_and_larry.jpg)

3

https://nebomusic.net/javalessons/bob_and_larry.jpg

8. Examine the API for StdDraw at:
https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html .

We will now establish a canvas with dimensions of 400 by 400 pixels. The code below serves
as an example (Lines 10 to 21):

9. Click the “Run” button and you should see the blank Canvas. Make sure to “close” the
window when finished viewing.

4

https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

9. Examine the API for StdDraw at: https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

Notice there are three ways to draw an image onto the canvas:

We will use

picture(double x, double y, String filename, double scaledWidth, double scaledHeight)

To draw a picture onto the canvas. The parameters (variables inside the parenthesis) describe
how the values are used to control the properties of location and size of the image. Example
code is show below: (Lines 20 to 24)

5

https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

10. Click the “Play Icon and you will see the image”:

12. The StdLib also has methods for drawing lined and filled shapes:

setPenColor(int red, int green, int blue)

senPenRadius(double radius)

arc(double x, double y, double radius, double angle1, double angle2)

circle(double x, double y, double radius)

ellipse(double x, double y, double semiMajorAxis, semiMinorAxis)

square(double x, double y, double halfLength)

rectangle(double x, double y, double halfWidth, double halfHeight)

polygon(double [] x, double [] y)

filledArc(double x, double y, double radius, double angle1, double angle2)

filledCircle(double x, double y, double radius)

filledEllipse(double x, double y, double semiMajorAxis, semiMinorAxis)

filledSquare(double x, double y, double halfLength)

filledRectangle(double x, double y, double halfWidth, double halfHeight)

filledPolygon(double [] x, double [] y)

6

13. Some examples of shapes are shown below. Feel free to experiment!

7

Requirements:

A. Create a new Java Class Called “GraphicsProject01”. Add JavaDoc comments as shown
below:

B. Create a canvas size of at least 600 by 400 pixels with origin in upper left hand corner.

C. Find at least two new images and place the files into the Project01_Graphics_Test project.
Place these into the Canvas

D. Place at least 5 shapes with at least 3 different colors and at least 3 different shape methods.
Make sure to use comments for each shape to help the reader understand what code is trying to
do. Be creative!

E. Submit following to Google Classroom:

1)​ Screenshot of the finished Canvas
2)​ GraphicsProject01.java source code file

8

9

10

11

12

Computational Media
Project 03: For Loops and Methods for Graphics
Marist School

Description:

In this project you will implement three methods for creating graphics using for loops and nested
for loops. The skills for this project include:

●​ Defining and calling void methods with parameters to create drawings.
●​ Using a nested for loop and two index variables to create two dimensional grids of

graphics.
●​ Use counting variables, modulo, and conditionals to make decisions while creating the

graphic.

Project Setup:

1. Create a new Java Project called “Project03_GraphicsLoops” in Eclipse

2. Import the stdlib.java and Right-Click -> Add to Build Path.

3. Create a new Class in the “src” folder and call it “Project03.java”

4. The Project Setup should look like:

13

5. Add the JavaDoc Style comments for the Project03 class. They should like like the example
below:

6. We will now add the Method Stubs for the project. Method Stubs provide the framework to
develop code. We will also create the JavaDoc style comments for each method These outline
the structure of the code and then we will work within each method to write the functionality.

7. First, define the stub for the setup() method that will establish the drawing canvas:

14

8. Define the stub for the method for makeCheckers(). Be sure to include the JavaDoc
comments as shown

9. Define the stub for the method makePyramid(). Be sure to include the JavaDoc comments
as shown.

15

10. Define the stub for the method makeGradient(). Be sure to include the JavaDoc comments
as shown.

11. Define stub for creating a row of squares. We will work through this together in the
directions for an example:

16

Work Through Directions for Row of Squares:

1. We will work through the steps to use a for loop to create a row of squares. The goal is to
provide an example of how to iterate with a for loop and use math operators to set the location
of each square.

The algorithm for creating the row of squares is as follows:

Algorithm makeRowSquares: (Parameters x, y, n, size)

Loop n times:
​ newX = i * size + size / 2 + x // Sets starting position for newX based on x
​ Set Pen Color to Black
​ Draw Outline of Square at position newX, y, size / 2
​ Set Pen Color to White
​ Draw Filled Square at position newX, y, size / 2

​
First, find the makeRowSquares() method stub we defined above:

17

2. Now create a for loop that will iterate from 0 to n exclusive as shown below

3. Inside the loop, we will calculate the new position for called newX based on the shift right in
size and the starting position of x

4. Now we will use the StdLib drawing commands to draw the boxes:

18

5. We also need to implement code for the setup() method. Find the setup() method and add
code to set the canvas size: (Line 24 below)

6. Now add code to set scale and show the canvas: (Lines 27-28 and Line 31)

19

7. We now can test the setup() method and the makeRowSquares() method. Find the main()
method and call the setup() method to make a canvas that is 600 by 400 pixels:

Run the method and you should see the canvas:

20

8. Now call the makeRowSquares() method. In the example below we create 10 squares that
are 50 by 50 pixels in size starting at x=50 and y = 50.

9. Run the code and you should see:

10. Congratulations - you have finished setting up and practicing with Java Project 03. The next
section will outline the requirements.

21

Requirements for Project 03:

1. Implement the method makeCheckers() as shown below. The parameter n represents the n
x n dimensions of the checkerboard and the parameter size represents the size of each
square.

An example run of makeCheckers(5, 50); would produce:

A run of makeCheckers(8, 20); would produce

22

2. Implement the method makePyramid() as shown below. The parameter n represents
number of squares in the top row and then the pattern continues with n-1 squares until there is 1
square left. The parameter size represents the size of each square.

A run of: makePyramid(10, 30) would make:

23

3. Implement method makeGradient(int n) where the brightest part of the gradient is in the
center and moves darker towards the edges. Think about drawing n circles starting with the
large dark circle and moving smaller. You can choose the color range.

An example run of makeGradient(200) could look like:

24

Hint for Checkerboard:

For the checkerboard a “nested for loop” control structure allows the programmer to define one
loop inside another. An example in code is shown below:

Notice that instead of i for the index variable, we are using r and c. The variable r will count
the rows and c will count the columns. The output looks like this for running
nestedLoopDemo(6):

25

The example code below demonstrates a nested for loop printing the row and column numbers:

The output looks like this for nestedLoopDemo2(6). Notice that the “y axis” is printed as the row
and the “x axis” is the column.

Adapt this idea to make the checkerboard.

26

Hint for Gradient:

1. Here is a hint for the gradient. Think about concentric circles with each circle getting lighter in
color and smaller. Try the code below as a starting point: (Define method and then call in main)

27

Deliverables:

1. Create a Google Doc called “Lastname Project 03”.

2. Place a Heading on the Google Doc:

Java Project 02: For Loops and Methods for Graphics
Firstname Lastname
Programming in Java
Term 2, 2024

3. For each Method (makeCheckers, makePyramid, makeGradient) put the following:

●​ Name of Method
●​ Short description of the Method
●​ At least three screenshots of Method runs with different parameters
●​ Copy and paste the Code from your method (with the JavaDoc comments) into a table

on the Google Doc.

Remember to use Times New Roman for prose and Consolas for code.

4. Submit the following to the Google Classroom:

●​ Google Doc “Lastname Project 03”
●​ Source Code file Project03.java

28

Java programming for Image Manipulation
Version 2024: Standard Library

Description:

The goal of these lessons is to apply the skills of nested iteration, math operations, conditionals,
and manipulation of colors in pixels of images. A picture is a multidimensional collection of
numerical data displayed in a way that humans interpret as a two dimensional color image.

The Standard Library from Princeton University (https://introcs.cs.princeton.edu/java/stdlib/)
provides an API toolset for opening, editing, and saving images. We will use this library to
explore and practice skills in traversing and editing arrays of data.

These series of lessons will work through various elemental techniques in image editing
including:

●​ Opening, Editing, and Saving Image data with Picture Object
●​ Traversing 2D array of pixels and Editing values in color channels of Red, Green, Blue,

and Alpha
●​ Rearranging pixel values for inverting and mirror effects
●​ Algorithms for creating grayscale and Duotone effects
●​ Combining images onto larger canvas such as tiling or collage
●​ Substitution algorithms used in greenscreen effects

The ultimate goal is to provide experience and practice skill in iterating through multidimensional
data structures to provide the foundation for further study in computing algorithms such as path
finding, graph theory, and machine learning.

Contents:

Lesson 01: Image Encoding
Lesson 02: Setup Eclipse IDE and ImageManipulation project
Lesson 03: Quickstart: Opening Images
Lesson 04: Java Picture Functions
Lesson 06: Visiting Pixels: writing the setRed() method
Lesson 07: Assignment: setGreen() and setBlue()
Lesson 08: Writing makeGrayscale() method
Lesson 09: Saving Images to Files
Lesson 00: Implement makeNegative() method
Lesson 11: Reversing Images on X and Y Axis
Lesson 12: Mirroring images on X, Y, and Diagonal Axis
Lesson 13: Averaging Two Images
Lesson 15: Combing Images onto a Canvas
Lesson 16: Final Project Description

29

https://introcs.cs.princeton.edu/java/stdlib/

Additional Content:
Tiling Project from Princeton COS126
Duotone Project from Princeton COS126

30

Lesson 01: Image Encoding in Java

Key Concepts:

●​ Format of Images in Computing
●​ Java Structure for Modeling Images
●​ Java Picture Object methods

Format of Color Images in Java:

In computing, an image is stored as a two dimensional (2D) collection of pixels. By convention,
the Y Axis are called the Rows and the X Axis are called columns. The origin (0, 0) is located in
the upper left corner.

31

Java structure for Pixels in Images:

A Picture Object is a grid of 2D Pixels. A Pixel contains four numerical values:

●​ Red
●​ Green
●​ Blue
●​ Alpha

Each value contains a number between 0 and 255. Think of a color channel as a light with a
value of 0 being the light is off, and 255 the light is full strength. The Alpha channel controls the
“transparency” of the pixel. An Alpha of 255 means the pixel is opaque and an Alpha of 0 means
the pixel is transparent. Image formats such as .png, and .gif have “Alpha” channels. “.jpg”
images do not have an Alpha Channel. For most of these lessons, we will work only with Red,
Green, and Blue values.

An HTML color picker works in the same manner.

32

When referring to a specific Pixel in a Picture object, the returned object in Java is a Color
Object.

Key Commands in stdlib for Java Picture Object:

33

Lesson 02: Setup Eclipse IDE and ImageManipulation project

Key Terms:

Eclipse is an IDE (Integrated Development
Environment) used for writing and running
code.

A Jar File is a Java Archive file that
encapsulates a a Library of functionality.

We will use the Jar file: “stdlib.jar”

.jar means “Standard Library” and it is the
library for Java used by Princeton University
in their programming classes.

Most universities and businesses will have
their own custom libraries for Java and other
languages to standardize and provide
functionality for research and industry work.

MIT has the “Processing” IDE and Georgia
Tech has used the Media Computation .jar
file. These libraries change and evolve
throughout the years.

34

35

36

Setup Eclipse, Make New Project, Import Library

Overview: (Details follow)

1. Create new Project “ImageManipulation”
2. Download the stdlib.jar file
3. Copy stdlib.jar file into project and add to build path

Process:

1. Start Eclipse

2. Close the Welcome Tab if needed.

3. Select “File -> New -> Java Project” from the menu bar

4. Name the project “ImageManipulation” and click “Next”

37

5. Make sure the “Create module-info.java file” is unchecked:

6. Click “Finish”

7. Click on the links below to download the “stdlib.jar” file

https://nebomusic.net/javalessons/stdlib.jar

8. Click “Allow” in your browser if needed.

9. Click on the link below to download the “Bob and Larry” sample image (or find an image of
your own. Make sure it is smaller than 800 by 800 pixels.

https://nebomusic.net/javalessons/ImageManipulation/bob_larry.jpeg

10. Find the .jar and image file in your downloads folder:

38

https://nebomusic.net/javalessons/stdlib.jar
https://nebomusic.net/javalessons/ImageManipulation/bob_larry.jpeg

11. Select the stdlib.jar file and select “copy” (Control - c)

12. Go to your project in Eclipse.

13. Click on Project and select “Paste” to put the stlib.jar file into the project

14. Go back to your downloads folder and copy the sample image. Then paste the image into
your project in Eclipse. The structure of the project should look like this:

15. We will now add the .jar file to the build path. Left click once on the stdlib.jar file.

16. Right click on the stdlib.jar file and select “Build Path - Add to Build Path”

17. The project structure will change and you will see “Referenced Libraries” and the .jar file.

18. Congratulations! You are ready to go and start the next Lesson!

39

Lesson 03: Quickstart: Opening Images

Overview of Steps

1. Create new Java File called “ImageWorker.java”

2. Define String for image path

3. Create myPicture object from the path

4. Write code to show the myPicture

5. Write code to explore myPicture

Process: Create a New Java File called “ImageWorker.java”

1. Open Eclipse and your “ImageManipulation” project.

2. Find the “src” folder in the Project structure.

3. Right click on the “src” folder and select “New -> Class”

40

4. Name the Class “ImageWorker.java”

5. Make sure the box is checked “public static void main(String [] args)”

5. Click “Finish”

6. The new .java file should appear in the “src” folder

41

Define String for Image Path:

7. Double click on the “ImageWorker” file.

8. This Java class format uses the public void main(). For now we will write code “inside” of
public void main. Think of this like the “run” function in the previous code we have written.

9. Define a String to point to the location of the sample image “bob_larry.jpeg” ​
(Lines 7 and 8 in the sample)

Create a myPicture instance using the path

10. We will now create a Picture object “myPicture” that will hold the 2 dimensional array of pixel
objects.

11. Lines 10 and 11 show how to create a Picture object “myPicture” using the path String.

42

Write code to show “myPicture”

12. Use the .show() method to display the picture. Lines 13 and 14 show the implementation.

13. Save and run the code. The image should appear.

43

Congratulations and Short Assignment:

You have successfully tested the Java Image code. Here is a short assignment:

1. Find a picture (use a small picture, less than 512 by 512 pixels).

2. Copy the picture into the Project folder.

3. Create a new String path2 to point to your picture file.

4. Create a new Picture Object and open the Picture using the .show() function.

44

Lesson 04: Java Picture Functions

45

46

47

Lesson 06: Visiting Pixels: writing the setRed() method

Objective: Write a function to visit all the Pixels in a Picture object and set the Pixels to the
same red value.

Skills Needed:​
​ Open a Picture Object​
​ Use the get(x, y) and Color Objects​
​ Using For Loops in a “nested” style​
​ Using the .show() method

Work-through Lesson - Step by Step Instructions

Overview of Process:

1. Open or write the ImageWorker.java to open and display the sample
picture

2. Define the function ​
public static Picture setAllRed(Picture p, int red)

3. Create a copy of the picture

4. Use nested for loops to change all red pixel values of the copy.

5. Create a new class called “Lesson_06”

6. Test the function and show in the void main() function of “Lesson_06”

48

Open or write the ImageWorker.java

1. Open Eclipse and find the Project you created from 03 Quickstart Opening Exploring
and Viewing Images. If you do not have this code, use the directions from 03 to set up
the project.

2. The starting code is shown below:

49

Define function setAllRed(Picture p, int red)

3. Start below the curly bracket the closes the main() function.

4. Write the function definition for setAllRed(Picture p, int red)​
(Lines 18 through 22 in example)

5. Notice that we have a ‘return null’ is written on line 21. This is a placeholder for a
needed return statement.

50

Create a copy of the parameter Picture p

6. Inside the function, create a Picture object named “output” to hold a copy of the
incoming picture.

7. Change the return statement to return output.

51

Setup nested for loops to visit each pixel value

We are going to visit each pixel and change the red values. This is the “Do the work”
part of the process

8. Write a for loop to move through all the y values

9. Write a for loop inside the y loop for the x values.

10. Notice the placement of the curly brackets to “nest” the Loop. We will go one row at
a time and visit each value in the row. The next page will outline how to change the
value.

52

Get pixel at (x, y) and change red value

Now we will get the pixel at x, y from the output copy and change the red value.

11. Use the .get() function to get the Color at (x, y) from the loop

12. Create a new Color substituting input red and existing getGreen() and getBlue()

13. Set the Color value of the output image at pixel x, y with new Color.

53

Create a new class called “Lesson_06”

We are going to start making separate classes for each lesson to test the functions.

14. Right click on the “src” folder and select “New-Class”

15. Name the class “Lesson_06”

16. Make sure the box “public static void main(String [] args) is checked.

17. Click “Finish”

18. You should now be in the new class “Lesson_06”

54

Test the setAllRed() in the main function of Lesson_06

19. Go back to the main function

20. Use the ImageWorker.setAllRed() function to create a new Picture object named
“zeroRed” with red values set to 0. (Experiment with different values)

21. Set the Title of zeroRed to “No Red”

22. Use the .show() function to display the original and changed picture.

55

Run the Program and note the two Images

Exercises:

1. In the main() function of Lesson_06, use ImageWorker.setAllRed() with the “Bob and
Larry” picture and create and display a picture with red set to 255.

2. Import your own picture (less than 512x512 pixels) and try the setAllRed() function
with different red values.

56

Lesson 07: Assignment: setGreen() and setBlue()

Requirements

1. Open the “ImageWorker” project with setAllRed()

2. Write the Code Stubs as shown here for setAllGreen() and setAllBlue()

3. Complete the code to implement the setAllGreen() and setAllBlue() functions.

4. Create a Java class called “Lesson_07” Using your own image, test and show the
ImageWorker.setAllGreen() and ImageWorker.setAllBlue() functions with at least two
different values for each function.

5. Display the original and the test images (You will have 5 images total)

57

Lesson 08: Writing makeGrayscale() method

Objective: Write a function to visit all the Pixels in a Picture object and compute
grayscale value to create a grayscale image.

Skills Needed:​
​ Open a Picture Object​
​ Use the get(x, y) and ​
 set(x, y) functions.​
​ Use the Color object and getRed(), getGreen(), ​
​ ​ and getBlue() methods​
​ Using For Loops in a “nested” style​
​ Reading Math formulas and converting to Java​
​ Using the .show() method​

Work-through Lesson - Step by Step Instructions

58

Overview of Process:

1. Open ImageWorker.java file.

2. Define the function stub in ImageWorker.java​
public static Picture makeGrayscale(Picture p)

3. Create a copy of the picture

4. Use nested for loops to visit, compute gray value, and write in each pixel of copy.

5. Create Lesson_08 class and test in the main() function.

Open ImageWorker.java file

1. Open Eclipse and find the Project “ImageManipulation”.

2. Open the ImageWorker.java file Leave the setAllRed(), setAllBlue() and
setAllGreen() functions in the code. (Do not delete anything!)

3. Scroll down to below the setAllBlue() function. (Towards the end of the file)

Define function makeGrayscale(Picture p)

4. In ImageWorker.java, find a starting place below your “setAll” functions.

5. Write the function definition for makeGrayscale(Picture p)​
​
6. Notice that we have a ‘return null’ is written in function. This is a placeholder for a
needed return statement.

59

Create a copy of the parameter Picture p

7. Inside the function, create a Picture object named “output” to hold a copy of the
incoming picture.

8. Change the return statement to return output.

60

Setup nested for loops to visit each pixel value

We are going to visit each pixel to compute the new gray scale value. This is the “Do
the work” part of the process

9. Write a for loop to move through all the y values

10. Write a for loop inside the y loop for the x values.

11. Notice the placement of the curly brackets to “nest” the Loop. We will go one row at
a time and visit each value in the row. The next page will outline how to compute the
gray scale value.

61

Compute gray scale value and assign to Pixel

Now we will get the red, green, and blue values for each pixel and compute the
grayscale value. The math is:

gray = (red + green + blue) / 3

Thus, we will average the color values of each pixel. There are other formulas for
computing gray scale. (See GIMP resource here) We are using the average formula.

The general algorithm is written below. We will implement the code on the next page.

Algorithm: Convert to Gray scale

For Each Color c at (x, y) from source Picture:​
​ R = red from Color c​
​ G = green from Color c​
​ B = blue from Color c​
​ gray = (R+G+B) / 3​
​ Create new Color with gray values​
​ Set color of output pixel at (x, y) to new Color

​

62

https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

Coding for Grayscale average algorithm

12. Use the algorithm and code sample below to implement creating a new color for
each pixel

Algorithm: Convert to Gray scale

For Each Color c at (x, y) from source Picture:​
​ R = red from Color c​
​ G = green from Color c​
​ B = blue from Color c​
​ gray = (R+G+B) / 3​
​ Create new Color grayColor with gray values​
​ Set color of output at (x, y) to grayColor

63

Create Lesson_8 Class for Testing

13. Right click on the “src” folder and select “New-Class”

14. Name the class “Lesson_08”

15. Make sure the box “public static void main(String [] args) is checked.

16. Click “Finish”

64

Test Function and show in void main() of Lesson_08

17. Find the static void main() function in Lesson_08

18. Add code to create a new Picture object using the ImageWorker.makeGrayscale()
function.

19. Call the .show() command to see the gray scale picture.

65

Exercises:

1. Import your own picture (less than 512x512 pixels) test with the
makeScaleFunction(). Show the original picture and the grayscale picture.

2. For a challenge, write a function makeLuminosity(Picture p) and implement the
Luminosity math as shown at: https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html.

You will need to cast between int and double datatypes. Test the new function in the
void main().

66

https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

Lesson 09

67

68

69

70

71

Lesson 11 Reversing Images on X and Y Axis

Objective: Write functions to visit all the Pixels in a Picture object and output a image
Reversed on the X or Y axis.

Skills Needed:​
​ Open a Picture Object​
​ Use the get(x, y) and ​
 Color objects.​
​ Using For Loops in a “nested” style​
​ Iterating backwards and forwards through loops

Work-through Lesson - Step by Step Instructions for X​
​
Assignment Lesson - Implement from Requirements for Y

​

72

Overview: Reversing Images on X Axis:

1. Open the ImageWorker.java file.

2. Define function stub for reverseOnX(Picture p)

3. Setup output object and nested for Loop

4. Implement the pixel color transfer

5. Create new class “Lesson_11”.

6. In class Lesson_11 import a picture and test the ImageWorker.reverseOnX()
function.

Open the ImageWorker.java file

1. Open the ImageWorker.java

2. Scroll down below the functions to find a line define the new function. Be sure to
leave all the functions you have defined so far as you will need them in later lessons.

3. Write the function sub for reverseOnX(Picture p) in the ImageWorker class. Note the
use of return null for the sub.

73

Setup the output object and next for loop:

4. Create a Picture object “output”

5. Setup nested for loop iterating through y and x axis:

74

Concept: Reversing values on Row of Pixels

Before we implement the math to transfer pixels, let us visualize a “row” of pixels that
that only hold one number (like an Array of integers):

100 150 200 225 263
​
Each location on the row has an address. In the above example of five elements the
addresses of the “x” position of each element would be:

To reverse the numbers, we will copy them into a blank array in reverse order:

We are going to setup a T-Chart that tracks the values of “x” (index of original row) and
“newX” (values for blank array):

75

So, we are going to “get” the Color from the original Row at “newX” and then write the
Color at the copy row at X:

Thus, for each row of the image, we are going to work forwards counting on x and then
create a new variable newX = width - x - 1. Then we transfer the color from the source
picture at newX to the output picture at x.

76

Implement the pixel color transfer

6. Setup a “newX” that is equal to the width of the image - 1 - the current x position.

7. Get the source Color c at ​
​ (newX, y)

8. Write the source Color c to the output pixel at (x, y)

77

Create a new Class called “Lesson_11”

9. Right click on the “src” folder.

10. Select “New - Class”

11. Name the class “Lesson_11”

12. Make sure the box “public static void main(String [] args)” is checked

13. Click “Finish”

78

Test and write output to File system.

14. Go to the main() function on Lessson_11

15. Use the ImageWorker.reverseOnX() to make a new Picture object called reverseX

16. Set the fileName String

17. Use the .write() function to save reverseX as “reverseX.jpg”.

79

Assignment: Implement reverseOnY(Picture p)

1. In the ImageWorker.java file, create a function stub public static Picture
reverseOnY(Picture p)

2. Implement code to reverse image on Y axis. (Hint, you can change the nested loop to
move through X first).

​
for (int x = 0; x < p.width(); x++) {​
​
​ for (int y = 0; y < p.height(); y++) {

​ }​
​
}

3. Test ImageWorker.reverseOnY() in main function of Lesson_11 and write results of
test to File system as “reverseY.jpg”

80

81

Lesson 13 Averaging Pictures

82

83

84

85

86

87

88

Averaging Images: Requirements

1. Find two images of same dimensions. You can use PictureA and PictureB as
samples to get started.

PictureA: http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg

PictureB: http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg

2. Implement the averagePictures(Picture a, Picture b) function in ImageWorker

3. Create new class “Lesson_13”

4. Test the ImageWorker.averagePictures(Picture a, Picture b) function in the void
main() of Lesson_13.

5. Save the output of the average image to the file system.

6. Make sure to run this algorithm on your own pictures in addition to the samples.

89

http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg
http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg
http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg
http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg

Lesson 14 Resizing Images

90

91

92

93

Lesson 15 Creating New Image and Combining Images

Objectives: Create a Blank Picture Object to a Specific Size​
​ ​ Write a function to Copy pixels from one ​
​ ​ Picture object to Another.

Skills Needed:​
​ Using Nested For Loops with Picture objects​
​ Getting and Setting Color Values from Pixels​
​ Using functions we have already written to ​
​ ​ create new edited Picture Objects

Work-through Lesson - Step by Step for creating blank Object and placePicture()
function.

Overview of Process:

1. Create a new class called “Lesson_15”

2. Use the Picture(int x, int y) constructor to create a blank canvas in the main method
of “Lesson_15”

3. Go to the “ImageWorker” file and implement the placePicture() function.

4. Go back to “Lesson_15” and experiment with placing Picture objects, using effects
functions, and resizing existing pictures.

5. Write canvas Picture object to file.

94

Create new Java class “Lesson_15” and import two pictures

1. Create new Java Class “Lesson_15”.

2. In the main method, import two pictures. You may use any pictures you like. I am
going to use the rose.jpg and bob_larry.jpg.

Use the Picture(int x, int y) constructor to create a blank canvas.

3. We will now make a blank Picture object called “canvas” using the Picture(x, y)
constructor.

4. Because the source pictures are 512 x 512 pixels, we are going to make the canvas
2048 wide and 2048 tall.

95

Define the placePicture() function in ImageWorker

5. Go to the ImageWorker class.

6. Scroll down and write a function stub for public static Picture placePicture().

7. Use a return null as the placeholder.

8. We will start the implementation on next page

96

Setup the Nested For Loop

9. Setup the nested for loops to copy the pictures from p to canvas. Notice we will use
‘r’ for vertical (Y) positions and ‘c’ for horizontal (X) positions.

Compute destination (x, y) and copy Pixel Colors

10. Inside the nested for loop, compute dX and dY using the x and y parameters.

11. Get the Color at (c, r) from p. Name this color “pS”

12. Set the color of canvas at (dX, dY) to the Color from p at (c, r) we named “pS”

97

Experiment with placing Picture objects, using effects functions, and resizing
existing pictures in Lesson_15 class

13. Go back to Lesson_15 and find the main() function. Create some new images using
the functions you wrote.

14. I am going to experiment with the setAllRed(), setAllBlue(), setAllGreen() from
ImageWorker

15. Use the ImageWorker.placePicture() to put these on the canvas.

16. Use canvas.show() to test.

98

Write Picture to File:

1. Experiment with editing / writing code to manipulate your images.

2. Write these images to the canvas.

3. Save the canvas to the File system as “canvas.jpg”.

99

100

101

102

Project 01: Duotone Filter (by Kevin Wayne)
A duotone filter involves using two colors to create a new image. In particular, a duotone
filter is a way to reproduce an image, using combinations of only two ink colors, color1
and color2.

It is a popular effect for photographers and digital artists. (Here’s a nice site for
experimentation.)

To apply a duotone filter to an image, consider each pixel of a source image one at a
time:

●​ Let (r, g, b) denote the red, green, and blue components, respectively of the pixel.
Each component is an integer between 0 and 255.

●​ Let (r1, g1, b1) and (r2, g2, b2) denote the red, green, and blue components of
color1 and color2 respectively.

●​ Change the color of the pixel from (r, g, b) to (r’, g’, b’) by applying the following
formulas:

○​ First, compute the monochrome luminance of the given color as an
intensity between 0.0 and 255 using the NTSC formula:

■​ luminance = (0.299r + 0.587g + 0.114b) / 255.0
○​ Then, compute r’, g’, b’ using the formulas:

■​ r’ = luminance * r1 + (1 - luminance) * r2
■​ g’ = luminance * g1 + (1 - luminance) * g2
■​ b’ = luminance * b1 + (1 - luminance) * b2
■​ When computing r’, g’, b’ round the result to the nearest integer to

so that r’, g’, b’ are integers between 0 and 255.

Hint for rounding:

double red = 1.75;

int redRounded = (int) Math.round(red);

103

https://medialoot.com/duotones

Requirements:

Write a program Duotone.java that applies a duotone filter to an image, and displays
the results in a window. You may use StdPicture or Picture to read, modify, and
display the picture. More information on StdPicture and example can be found below:

Example:

public class DuoTone {

​ public static void main(String[] args) {

​ ​ // Define path String and Open Picture

​ ​ String path = "bob_larryV2.jpg";

​ ​ StdPicture.read(path);

​ ​

​ ​ // Read colors at pixel (10, 10)

​ ​ int red = StdPicture.getRed(10, 10);

​ ​ int green = StdPicture.getGreen(10, 10);

​ ​ int blue = StdPicture.getBlue(10, 10);

 // Show Picture on Screen

StdPicture.show();

​ ​

​ }

}

104

For example, given a photo of Johnson Arch:

Duotone Image:

In this sample execution,
color1 is Princeton orange (245, 128, 37) and
color2 is black (0, 0, 0).

105

Take a photo of a building, statue, gate, or other structure on campus and select two
different colors for (r1, g1, b1) and (r2, g2, b2). Apply the duotone filter to that image.

Deliverables:

1. Create a Google Doc named “Lastname Duotone Project”. Set the font to Times New
Roman 12.

2. Place a header on the document in the following format:

Firstname Lastname​
Class Name​
Period, Term, Year​
Project Name

​
3. In the body of the document, place the following:

●​ Screenshot of the original image you selected to apply the Duotone program.
●​ Screenshot of the resulting Duotone image from your Code
●​ Screenshot of the color patch for your color1 including the red, green, and blue

values.
●​ Screenshot of the color patch for your color2 including the red, green, and blue

values.
●​ (You can use any HTML Color Picker to create the color patch)
●​ A short paragraph outlining your process for creating the DuoTone Code.

4. Create a Table in the document and paste your code from DuoTone.java in the table.
Make sure the code is in consolas font.

5. Submit the Google Doc “Lastname Duotone Project” to the Google Classroom.

106

Project 02: Rectangular tile of an image (by Kevin Wayne)
Write a program to create a rectangular tile of an image. A rectangular tile of an image is
created by repeating copies of an image in a rectangular grid, with a specified number
of columns and rows. For example, consider the following image:

Here is a 6-by-3 rectangular tile:

107

Requirements:

1. Write a program Tile.java that takes three command-line arguments (the file name
of the image, the number of columns, and the number of rows) and displays a
rectangular tile of the image, as described above. Using the Picture API data type,
organize your program using the following API:

public class Tile {

 ​ // Returns a cols-by-rows tiling of the specified image.​
​ public static Picture tile(Picture picture, int cols, int rows) {​
​ ​ // Complete Code Here

​ }

 ​ public static void main(String[] args) {​
​ ​ // Define Picture Object, number of rows, number of columns​
​ ​ String path = “tile.png”;​
​ ​ int width = 6;​
​ ​ int height = 3;

​ ​ // Call the tile method and show the resulting image

}

}

​
2. Run the program with three different input tile images with different width and height
values. You may use the tile images provided on the Google Classroom in the .zip file or
you may create your own tiles. (Create images less than 128 by 128 pixels).

108

https://introcs.cs.princeton.edu/java/11cheatsheet/#Picture

Example Program Executions:

princeton.png with width of 1 and height of 1

princeton.png with width of 5 and height of 2

bricks.png with width of 1 and height of 1

bricks.png with width of 9 and height of 4

109

Deliverables:

1. Create a Google Doc named “Lastname Tile Project”. Set the font to Times New Roman
12.

2. Place a header on the document in the following format:

Firstname Lastname​
Class Name​
Period, Term, Year​
Project Name

​
3. In the body of the document, place the following:

●​ Screenshot of the original tile images (at least 3 different images)
●​ Screenshot of the resulting tile images (at least 3 examples)
●​ Label each image set with the width and height.
●​ A short paragraph outlining your process for creating the Tile Code.

4. Create a Table in the document and paste your code from Tile.java in the table. Make
sure the code is in consolas font.

5. Submit the Google Doc “Lastname Tile Project” to the Google Classroom.

110

	Project 01: Duotone Filter (by Kevin Wayne)
	Project 02: Rectangular tile of an image (by Kevin Wayne)

