Computational Media
Project 01: Graphics and StdLib Setup
Marist School

Description:
In this class we will use Java, Eclipse, and Standard Library (stdlib.jar) from Princeton. The
combination of Java and the Standard Library will provide a platform for us to run programs that

use images and sound.

The Standard Library provides a wide array of tools for data visualization, statistics, and reading
/ writing various media files. The API for Standard Library can be found at:

https://introcs.cs.princeton.edu/java/stdlib/

In this assignment you will setup and test Eclipse, Java, and the stdlib.jar. Then you will code
several short examples to test and demonstrate the Standard Library. We will use StdLib and
some of the Princeton lessons later in the Term.

Process:

1. Download the stdlib.jar file from the Google Classroom or this link: stdlib.jar

2. Create a new Java Project in Eclipse and call it “Project01_GraphicsTest”

3. Expand the project hierarchy in the “Package Explorer” until you see the “src” folder.

- W A 0-Q- # G 8

% Package Explorer 53 o P T W

| g '_,:':'- Project00_JavaSetup
hi "_,:‘:'- Projectd1_Graphics_Test
P = JRE System Library [JavaSE-10

https://introcs.cs.princeton.edu/java/stdlib/
https://nebomusic.net/javalessons/stdlib.jar

4. The stdlib. jar file should be in your Downloads folder. Copy stdlib.jar into the
Assignment00_LibraryTest folder.

= w Q- Qr WO E
[Package Explarer 52 e T

» 1;—‘;'- Project00_JavaSetup
v lﬁ- Projectd1_Graphics_Test
b =, JRE System Library [JavaSE-10]
b (s
b =, Referenced Libraries
i) bob_and_larry.jpg
& stdlib.jar

5. We now need to add the stdlib. jar file to the build path of the project. Right click on
stdlib.jar and select “Build Path -> Add to Build Path”

[# Package Explorer 53 =

5 -
v ljd Assignment00_LibraryTest
¥ =\, JRE System Library [JavaSE-10]

2 src
= stdlib.j
New >
Open F3
Open With >
Show In EW >
[E Copy #C
£z Copy Qualified Name
[T Paste 1Al
& Delete =
Build Path > £ Add to Build Path
Refactor T >
g Configure Build Path...
By Import...
&y Export...
<" Refresh F&
Assign Working Sets...
D Run As >
%5 Debug As >
Team >
Compare With p Hems i @ Javadoc Declaration
Replace With P, 1 warning, 0 others
tien
Properties 31l Jjarnings (1 item)

6. With std1lib. jar on the build path, we will now create a Java class that will test features of
the library. Right click on the “src” folder and create a new Java class called
“GraphicsTester.java’. Add JavaDoc Comments as shown below:

[] [] WorkspaceJavaProgramming2023 - ProjectO1_Graphics_Test/src/GraphicsTester.java - Eclipse SDK
B HE Y 40 Q #6 &5 PARE 1 Y- il-00
[# Package Explorer 52 <1:::'D M= [J] *GraphicsTester.java 53 =]
b 12 Projectd0_JavaSetup 1= [k
hd '_,7J Project01_Graphics_Test - :
» m\ JRE Syatem Library [JavaSE-10] 2 x Tests StdLib and Graphics for Java
v Bsre 3 *
¥ i (default package) 4 % @author Firstname Lastname
» [J] GraphicsTester.java 5 *
b =, Referenced Libraries 6 */
@ bob_and_larry.jpg . .
¥ stii.jar ; public class GraphicsTester {
EE public static void main(String[] args) {
=10 // TODO Auto-generated method stub =
11
12 =
13
14 }
15
16 }
17

7. We will now test the ability to read and display images. Find a small .jpg image file and place
it into the project root directory. You can use “bob_and_larry.jpg” from the Google Classroom as

a sample. (https://nebomusic.net/javalessons/bob_and_larry.jpg)

0@
CirE @ s - 0-Q # G- &

¥ Package Explorer 53 e
=

L "_,:‘/J- Project00_JavaSetup
v "_,:‘,J- Projectld1_Graphics_Test
» B JRE System Library [JavaSE-10]
¥ [src
¥ £ (default package)
b [J] GraphicsTester.java
b =, Referenced Libraries

¢ stdlib.jar

https://nebomusic.net/javalessons/bob_and_larry.jpg

8. Examine the API for StdDraw at:
https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html .

We will now establish a canvas with dimensions of 400 by 400 pixels. The code below serves
as an example (Lines 10 to 21):

m *GraphicsTester.java 33
5 %
6 *x/
7 public class GraphicsTester {
8
ge public static void main(String[] args) {
10 // Setup Canvas variables for size
11 int width = 400;
12 int height = 400;
13
14 StdDraw.setCanvasSize(width, height);
15
16 // Set the Scale and Origin: Upper Left
17 StdDraw.setXscale(®, width);
18 StdDraw.setYscale(height, @);
19
20 // Show Canvas
21 StdDraw.show();
22
23 }
24
25 }
26

9. Click the “Run” button and you should see the blank Canvas. Make sure to “close” the
window when finished viewing.

® GraphicsTester
@ Standard Draw
File

https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

9. Examine the API for StdDraw at: https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

Notice there are three ways to draw an image onto the canvas:

void picture(double x, double y, String filename) Draws the specified image centered at (x, y).

void picture(double x, double y, String filename, Draws the specified image centered at (x, y), rotated given
double degrees) number of degrees.

void picture(double x, double y, String filename, Draws the specified image centered at (x, y), rescaled to the
double scaledWidth, double scaledHeight) specified bounding box.

void picture(double x, double y, String filename, Draws the specified image centered at (x, y), rotated given
double scaledWidth, double scaledHeight, double degrees) number of degrees, and rescaled to the specified bounding box.

We will use

picture(double x, double y, String filename, double scaledWidth, double scaledHeight)

To draw a picture onto the canvas. The parameters (variables inside the parenthesis) describe
how the values are used to control the properties of location and size of the image. Example
code is show below: (Lines 20 to 24)

[J] *GraphicsTesterjava 53
12 [k
2 % Tests StdLib and Graphics for Java
3 %
4 * @author Firstname Lastname
5 %
6 */
7 public class GraphicsTester {
8
9= public static void main(String[] args) {
10 // Setup Canvas variables for size
11 int width = 400;
12 int height = 400;
13
14 StdDraw.setCanvasSize(width, height);
15
16 // Set the Scale and Origin: Upper Left
17 StdDraw.setXscale(@, width);
18 StdDraw.setYscale(height, @);
19
20 // Variable pointing the the Bob and Larry file
21 String imgPath = "bob_and_larry.jpg";
22
23 // Draw Bob and Larry picture size 60, 80
24 StdDraw.picture(100, 100, imgPath, 60, 80);
25
26 // Show Canvas
27 StdDraw.show();
28
29 }
30
31 }
32

https://introcs.cs.princeton.edu/java/stdlib/javadoc/Draw.html

10. Click the “Play Icon and you will see the image™:

& GraphicsTester
® Standard Draw
File

12. The StdLib also has methods for drawing lined and filled shapes:

setPenColor(int red, int green, int blue)
senPenRadius(double radius)

arc(double x, double y, double radius, double anglel, double angle2)
circle(double x, double y, double radius)

ellipse(double x, double y, double semiMajorAxis, semiMinorAxis)
square(double x, double y, double halfLength)

rectangle(double x, double y, double halfWidth, double halfHeight)
polygon(double [] x, double [] y)

filledArc(double x, double y, double radius, double anglel, double angle2)
filledCircle(double x, double y, double radius)

filledEllipse(double x, double y, double semiMajorAxis, semiMinorAxis)
filledSquare(double x, double y, double halfLength)

filledRectangle(double x, double y, double halfWidth, double halfHeight)
filledPolygon(double [] x, double [] y)

13. Some examples of shapes are shown below. Feel free to experiment!

26

// Examples with shapes:
27 StdDraw.setPenColor(@, 255, @); // Green
28 StdDraw. filledRectangle (200, 375, 200, 25);
29
30 StdDraw.setPenColor(255, @, @); // Red
31 StdDraw.setPenRadius(0.04);
32 StdDraw.arc(200, 350, 100, ©, 180);
33
34 StdDraw.setPenColor(255, 125, @); // Orange
35 StdDraw.setPenRadius(0.04);
36 StdDraw.arc(200, 350, 80, 0, 180);
37
38 StdDraw.setPenColor(255, 255, @); // Yellow
39 StdDraw.setPenRadius(0.04);
40 StdDraw.arc(200, 350, 60, 0, 180);
41
@O Standard Draw
File

Requirements:

A. Create a new Java Class Called “GraphicsProject01”. Add JavaDoc comments as shown
below:

[) [] WorkspaceJavaProgramming2023 - Project01_Graphics_Test/src/GraphicsProje
g O R WG B P ARE T §Flo o
IC% Package Explorer 23 = [wl @ GraphicsTester.java m GraphicsProject01 java &3
BES v 19 /ak
h'_,'j‘JProjectOO_JavaSetup 2 * Graphics PI"OjECt 01
¥ = ProjectD1_Graphics_Test 3 x Demonstrates use of StdLib Drawing Methods
P =\, JRE System Library [JavaSE-10] 4 *
M 5 *x Canvas Size of at least 600 by 400
'H:‘E:r‘;“r':::r:gi’ctm - 6 % Insert at least 2 new images
PGraEhicsTesiﬂ_jw: 7 % Insert at least 5 shapes
P B, Referenced Libraries 8 *
@ bob_and_larry.jpg 9 % firstname lastname
=¥ stdlib.jar 18 *
11 */
12 public class GraphicsProject@l {
13
14= public static void main(String[] args) {
#15 /! Auto-generated method stub
16
17 +
18
19 }
20
21

B. Create a canvas size of at least 600 by 400 pixels with origin in upper left hand corner.

C. Find at least two new images and place the files into the Project01_Graphics_Test project.
Place these into the Canvas

D. Place at least 5 shapes with at least 3 different colors and at least 3 different shape methods.
Make sure to use comments for each shape to help the reader understand what code is trying to
do. Be creative!

E. Submit following to Google Classroom:
1) Screenshot of the finished Canvas
2) GraphicsProject01.java source code file

01 Drawing Challenge of the

Day!

public class Challenge@l {
public static void main(String[] args) {
// Create Canvas
int width = 600;
int height = 600;
StdDraw.setCanvasSize(width, height);

StdDraw.setXscale(®, width);
StdDraw.setYscale(height, @);

StdDraw.show();

// Start Drawing Code Here

L] Standard Draw

File

02 Drawing Challenge of the Day!

public class Challenge@2 {
public static void main(String[] args) {
// TODO Auto-generated method stub
// Create Canvas
int width = 600;
int height = 400;
StdDraw.setCanvasSize(width, height);

StdDraw.setXscale(@, width);
StdDraw.setYscale(height, @);

StdDraw.show();

// Start Drawing Code Here

L] Standard Draw
File

Hints: Starting Point = (90, 200)
Squares are 60 x 60 Pixels

03 Drawing Challenge of the Day!

L Standard Draw

public class Challenge®3 { File

public static void main(String[] args) {
// TODO Auto-generated method stub
// Create Canvas
int width = 660;
int height = 400;

0 W oo ?
StdDraw.setCanvasSize(width, height); é v& 3 @ é

StdDraw.setXscale(@, width);
StdDraw.setYscale(height, @);

StdDraw.show();

// Start Drawing Code Here

Hints: Starting Point = (40, 200)
String path = "bob_and_larry.jpeg"”;
} StdDraw.picture(x, y, path, w, h, angle);

04 Drawing Challenge of the Day! |;. S D

public class Challenge®4 {

public static void main(String[] args) {
f// TODO Auto-generated method stub
// Create Canvas
int width = 360;
int height = 360;

StdDraw.setCanvasSize(width, height);

StdDraw.setXscale(®, width);
StdDraw.setYscale(height, @);

StdDraw.show(); . .

f// Start Drawing Code Here

Hints: Starting Point = (30,30)
} Shapes have radius of 30
} Can you use for loops?

10

05 Drawing Challenge of the Day!

public class Challenge®5 {

public static void main(String[] args) {
// Setup
int width = 400;
int height = 400;

StdDraw.setCanvasSize(width,

StdDraw.setXscale(®, width);
StdDraw.setYscale(height, 0);

[/ Show
StdDraw.show();

height);

Composition with Red, Blue and Yellow
By Piet Mondrian 1930

06 Drawing Challenge of the Day!

import java.awt.Color;

public class Challenge@6 {

public static void main(String[] args) {

// Setup Canvas

int width = 400;

int height = 400;
StdDraw.setCanvasSize(width,

StdDraw.setXscale(@®, width);
StdDraw.setYscale(height, @);

StdDraw.show();

height);

Standard Draw
File

Gaussian Random and Uniform Random

11

Sample Code for Green Random Spots

// 1000 Random Green Spots

for (int i = 9; 1 < 1000; i++) {
// Random Center of Spot at
double x
double y

(275,

// Random green color uniform between 158 and 255
StdRandom.uniformInt(15@, 255); . ==

int g

// Set Pen Color
StdDraw.setPenColor(@, g, 0);

// Draw the Random Circle with Radius of 2

StdDraw.filledCircle(x, y, 2);
StdDraw.show();

275) with deviation of 25
StdRandom.gaussian(275, 25);
StdRandom.gaussian(275, 25);

StdRandom Methods (Pick a Random Number . . .)

StdRandom.gaussian(mu, sigma);

StdRandom.gaussian(50, 5);

Chooses a random number with a “Gaussian”
distribution. Values clumped towards the mu.
Returns a double

mu “Center of the value.” Location for us

sigma “Size of Distribution”. Think as Size

Looks like a Cluster of dots

StdRandom.uniformInt(min, max);

StdRandom.uniformInt (100, 200);

Chooses a random number between min and max.
Returns an integer

Uniform distribution (like rolling a dice).

Includes min and excludes max

12

Computational Media
Project 03: For Loops and Methods for Graphics
Marist School

Description:

In this project you will implement three methods for creating graphics using for loops and nested
for loops. The skills for this project include:

Defining and calling void methods with parameters to create drawings.
Using a nested for loop and two index variables to create two dimensional grids of
graphics.
e Use counting variables, modulo, and conditionals to make decisions while creating the
graphic.
Project Setup:
1. Create a new Java Project called “Project03_GraphicsLoops” in Eclipse
2. Import the stdlib.java and Right-Click -> Add to Build Path.

3. Create a new Class in the “src” folder and call it “Project03.java”

4. The Project Setup should look like:

¥ *,;—;'- Project03_GraphicsLoops

* = JRE System Library [JavaSE-10
¥ (B =rc

¥ B (default package)

» [J] ProjectD3.java

¥ =, Referenced Libraries

B oo stdlib.jar

.i? stdlib.jar

13

5. Add the JavaDoc Style comments for the Project03 class. They should like like the example
below:

m Project03.java &3
1= /%%
2 %
3 * Project@3: For Loops, Conditionals, Methods for Graphics
4 %
5 x @author Mr. Michaud
6 *x
7 x/
8 public class Project@3 {
9
10= public static void main(String[] args) {
=11 // TODO Auto-generated method stub
12
13 }
14
15 }
16
17

6. We will now add the Method Stubs for the project. Method Stubs provide the framework to
develop code. We will also create the JavaDoc style comments for each method These outline
the structure of the code and then we will work within each method to write the functionality.

7. First, define the stub for the setup () method that will establish the drawing canvas:

14

15= FESS

16 * Build the StdLib Canvas with inputs of

17 * width and height

18 * @param width

19 * @param height

20 */

21= public static void setup(int width, int height) {
22 // 5et Canvas Size with StdlLib

23

24 // Set Scale to put origin in upper left corner
25

26 // Show Canvas

27 }

28

14

8. Define the stub for the method for makeCheckers (). Be sure to include the JavaDoc
comments as shown

28

29¢ JE="

30 * Makes a Checkerboard with n by n squares

31 * with size being dimensions of squares in pixels
32 * @param n

33 % @param size

34 */

35¢< public static void makeCheckers(int n, int size) {
36 // Create Checkerboard

37

38 }

39

9. Define the stub for the method makePyramid(). Be sure to include the JavaDoc comments
as shown.

39

40= FESS

41 * Makes a pyramid with n number of rows.

42 * The top row has n squares. Then the next row has

43 * n-1 squares. This pattern continues until the last row
44 * has one square. The dimensions of the squares are determined
45 * by the parameter size

46 * @param n

47 % @param size

48 */

49¢= public static void makePyramid(int n, int size) {

50

51 ¥

52

15

10. Define the stub for the method makeGradient(). Be sure to include the JavaDoc comments
as shown.

53e FE=:

54 * Creates a centered Gradient image with bright in
55 * Center and moving towards dark on edges.

56 * Parameter n defines the number of steps in the gradient.
57 * You may choose the color range.

58 % @param n

59 *,/

60 public static void makeGradient(int n) {

61

62 }

63

11. Define stub for creating a row of squares. We will work through this together in the
directions for an example:

67

68= FESS

69 * Creates a row of n squares starting at x, y with size n
70 * This is a demonstration of using for loops

71 * to create drawing objects.

72 * @param X

73 * @param y

74 * @param n

75 * @param size

76 */

77¢ public static void makeRowSquares(int x, int y, int n, int size) {
78 // Loop and Create Squares

79

80

81 }

82

16

Work Through Directions for Row of Squares:
1. We will work through the steps to use a for loop to create a row of squares. The goal is to
provide an example of how to iterate with a for loop and use math operators to set the location

of each square.

The algorithm for creating the row of squares is as follows:

Algorithm makeRowSquares: (Parameters x, y, n, size)

Loop n times:
newX =i *size + size /2 + x // Sets starting position for newX based on x
Set Pen Color to Black
Draw Outline of Square at position newJX, y, size / 2
Set Pen Color to White
Draw Filled Square at position newJX; y, size /2

First, find the makeRowSquares() method stub we defined above:

67

687 YEZS

69 * Creates a row of n squares starting at x, y with size n
70 * This is a demonstration of using for loops

71 * to create drawing objects.

72 X

73 y

74 n

75 size

76 */

77¢ public static void makeRowSquares(int x, int y, int n, int size) {
78 // Loop and Create Squares

79

80

81 }

82

* ¥ X ¥

17

2. Now create a for loop that will iterate from 0 to n exclusive as shown below

public static void makeRowSquares(int x, int y, int n, int size) {
// Loop and Create Squares

for (int 1 = 8; 1 < n; i++) {

3. Inside the loop, we will calculate the new position for called newX based on the shift right in
size and the starting position of x

public static void makeRowSquares(int x, int y, int n, int size) {
// Loop and Create Squares

for (int 1 = @; 1 < n; i++) {

// Set Position for x (y stays the same)
int newX = i * size + size/2 + Xx;

4. Now we will use the StdLib drawing commands to draw the boxes:

public static void makeRowSquares(int x, int vy, int n, int size) {
// Loop and Create Squares

for (int 1 = @; 1 < n; i++) {

// Set Position for x (y stays the same)
int newX = 1 * size + size/2 + x;

// draw (Black border and White Square)
StdDraw.setPenColor(@, @, 0);
StdDraw.setPenRadius(0.005);
StdDraw.square(newX, vy, size/2);
StdDraw.setPenColor(255, 255, 255);
StdDraw. filledSquare(newX, vy, size/2);

18

5. We also need to implement code for the setup() method. Find the setup() method and add
code to set the canvas size: (Line 24 below)

15

16= VE =]

17 * Build the StdLib Canvas with inputs of

18 * width and height

19 * @param width

20 #* @param height

21 */

22e public static void setup(int width, int height) {
23 // Set Canvas Size with StdLib

24 StdDraw.setCanvasSize(width, height);

25

26 // Set Scale to put origin in upper left corner
27

28 // Show Canvas

29

30 ¥

6. Now add code to set scale and show the canvas: (Lines 27-28 and Line 31)

15

16= YE=:

17 % Build the StdLib Canvas with inputs of

18 # width and height

19 * @param width

20 #* @param height

21 */

22= public static void setup(int width, int height) {
23 // Set Canvas Size with StdLib

24 StdDraw.setCanvasSize(width, height);

25

26 // Set Scale to put origin in upper left corner
27 StdDraw.setXscale(@, width);

28 StdDraw.setYscale(height, @);

29

30 // Show Canvas

31 StdDraw.show() ;

32

33 ¥

34

19

7. We now can test the setup() method and the makeRowSquares() method. Find the main()
method and call the setup() method to make a canvas that is 600 by 400 pixels:

12 /f4k

2 %

3 % Project®3: For Loops, Conditionals, Methods for Graphics
4 %

5 % Mr. Michaud

6 *

T %/

8 public class Projectd3 {

9

iE public static void main(String[] args) {
11 7/ Auto-generated method stub
12 setup(600, 400);

13

14 }

15

Run the method and you should see the canvas:

@ Project03
[] Standard Draw
File

20

8. Now call the makeRowSquares() method. In the example below we create 10 squares that
are 50 by 50 pixels in size starting at x=50 and y = 50.

1= ok
2 %
3 * Project@3: For Loops, Conditionals, Methods for Graphics
4 %
5 =% Mr. Michaud
6 *
7 */
8 public class Project@3 {
9
10< public static void main(String[] args) {
= 11 /7 Auto-generated method stub
12 setup(600, 400);
13
14 makeRowSquares (50, 50, 10, 50);|
15 }
16

9. Run the code and you should see:

Project03
[] Standard Draw
File

10. Congratulations - you have finished setting up and practicing with Java Project 03. The next
section will outline the requirements.

21

Requirements for Project 03:

1. Implement the method makeCheckers() as shown below. The parameter n represents the n
x n dimensions of the checkerboard and the parameter size represents the size of each
square.

28

29¢ [*x%

30 * Makes a Checkerboard with n by n squares

31 * with size being dimensions of squares in pixels
32 * n

33 * size

34 */

356 public static void makeCheckers(int n, int size) {
36 // Create Checkerboard

37

38 }

39

An example run of makeCheckers (5, 50); would produce:

@ Projecto3
[] Standard Draw

File

A run of makeCheckers(8, 20); would produce

@ Project03
[] Standard Draw
File

22

2. Implement the method makePyramid() as shown below. The parameter n represents
number of squares in the top row and then the pattern continues with n-1 squares until there is 1
square left. The parameter size represents the size of each square.

39

40- FE=S

41 * Makes a pyramid with n number of rows.

42 % The top row has n squares. Then the next row has

43 * n-1 squares. This pattern continues until the last row
44 * has one square. The dimensions of the squares are determined
45 * by the parameter size

46 * n

47 * size

48 */

49¢ public static void makePyramid(int n, int size) {

50

51 }

52

A run of: makePyramid (10, 30) would make:

® Project03
] Standard Draw
File

23

3. Implement method makeGradient(int n) where the brightest part of the gradient is in the
center and moves darker towards the edges. Think about drawing n circles starting with the
large dark circle and moving smaller. You can choose the color range.

6@

6l= FESS

62 * Creates a centered Gradient image with bright in
63 # Center and moving towards dark on edges.

64 * Parameter n defines the number of steps in the gradient.
65 * You may choose the color range.

66 * @param n

67 */

68= public static void makeGradient(int n) {

69

70 2

71

An example run of makeGradient(200) could look like:

@ Project03
® Standard Draw

File

24

Hint for Checkerboard:

For the checkerboard a “nested for loop” control structure allows the programmer to define one
loop inside another. An example in code is shown below:

Sk

* Demonstrates a Nested For Loop with n Rows and Columns
* Qutput will be printing "*x " representing a cell inside
* A table with n Rows and n Columns

* @param n

*/

public static void nestedLoopDemo(int n) {

// Set number of ROWS and COLS
int ROWS = n;
int COLS = n;

// Outer Loop for Rows
for (int r = @; r < ROWS; r++) {

for (int c = @; c < COLS; c++) {
J// Do the Work
System.out.print("x ");

}

J/ Add a new Line at end of Row

System.out.printin("");

Notice that instead of i for the index variable, we are using r and ¢. The variable r will count
the rows and c will count the columns. The output looks like this for running
nestedLoopDemo(6):

* ¥ ¥ X X ¥
E
* ¥ X K X X
* ¥ K K X X
o
* X K X X X

25

The example code below demonstrates a nested for loop printing the row and column numbers:

[k
* Demonstrates a Nested For Loop with n Rows and Columns
* Qutput will be printing "r@,c@ " representing a cell inside
* A table with n Rows and n Columns
* @param n
*/
public static void nestedLoopDemo2(int n) {

// Set number of ROWS and COLS
int ROWS = n;
int COLS = n;

// Outer Loop for Rows
for (int r = @8; r < ROWS; r++) {

for (int c = @; c < COLS; c++) {
// Do the Work
String cell = "r" + r + "c" +c + " ";

System.out.print(cell);
// Add a 2 new Lines at end of Row

System.out.println("");
System.out.println("");

The output looks like this for nestedLoopDemo2(6). Notice that the “y axis” is printed as the row
and the “x axis” is the column.

“1 Problems 7 Javadoc Declaration E Console £
<terminated> Project03 [Java Application] /Library/Java/JavaV|
réc® récl roc2 rédc3 roécd réch
rlc® rlcl rlc2 rlc3 rlcd4 rlch
r2c@® r2cl r2c2 r2c3 r2cd4 r2ch
r3c® r3cl r3c2 r3c3 r3cd r3ch
rdc@® rdcl rdc2 rdc3 rdcd r4ch

r5¢® r5cl r5c¢2 r5c¢3 r5c4 r5c5

Adapt this idea to make the checkerboard.

26

Hint for Gradient:

1. Here is a hint for the gradient. Think about concentric circles with each circle getting lighter in
color and smaller. Try the code below as a starting point: (Define method and then call in main)

FE =
* Sample Gradient
* Generates 4 circles of graduating colors
* Dark Green to light green
*/
public static void makeGradientSample() {

// OQuter Circle 1
StdDraw.setPenColor(@, 50, 8);
StdDraw. filledCircle(600/2, 400/2, 600);

f/ Circle 2
StdDraw.setPenColor(@, 110, @);
StdDraw. filledCircle(600/2, 400/2, 400);

f/ Circle 3
StdDraw.setPenColor(@, 1806, 0);
StdDraw. filledCircle(600/2, 400/2, 200);

f/ Circle 4
StdDraw.setPenColor(@, 240, 0);
StdDraw.filledCircle(600/2, 400/2, 100);

® O Standard Draw

File

27

Deliverables:
1. Create a Google Doc called “Lastname Project 03”.
2. Place a Heading on the Google Doc:

Java Project 02: For Loops and Methods for Graphics
Firsthame Lastname

Programming in Java

Term 2, 2024

3. For each Method (makeCheckers, makePyramid, makeGradient) put the following:

Name of Method

Short description of the Method

At least three screenshots of Method runs with different parameters

Copy and paste the Code from your method (with the JavaDoc comments) into a table
on the Google Doc.

Remember to use Times New Roman for prose and Consolas for code.
4. Submit the following to the Google Classroom:

e Google Doc “Lastname Project 03”
e Source Code file Project®3.java

28

Java programming for Image Manipulation
Version 2024: Standard Library

Description:

The goal of these lessons is to apply the skills of nested iteration, math operations, conditionals,
and manipulation of colors in pixels of images. A picture is a multidimensional collection of
numerical data displayed in a way that humans interpret as a two dimensional color image.

The Standard Library from Princeton University (https://introcs.cs.princeton.edu/java/stdlib/)
provides an API toolset for opening, editing, and saving images. We will use this library to
explore and practice skills in traversing and editing arrays of data.

These series of lessons will work through various elemental techniques in image editing
including:

Opening, Editing, and Saving Image data with Picture Object

Traversing 2D array of pixels and Editing values in color channels of Red, Green, Blue,
and Alpha

Rearranging pixel values for inverting and mirror effects

Algorithms for creating grayscale and Duotone effects

Combining images onto larger canvas such as tiling or collage

Substitution algorithms used in greenscreen effects

The ultimate goal is to provide experience and practice skill in iterating through multidimensional
data structures to provide the foundation for further study in computing algorithms such as path
finding, graph theory, and machine learning.

Contents:

Lesson 01: Image Encoding

Lesson 02: Setup Eclipse IDE and ImageManipulation project
Lesson 03: Quickstart: Opening Images

Lesson 04: Java Picture Functions

Lesson 06: Visiting Pixels: writing the setRed() method
Lesson 07: Assignment: setGreen() and setBlue()
Lesson 08: Writing makeGrayscale() method

Lesson 09: Saving Images to Files

Lesson 00: Implement makeNegative() method

Lesson 11: Reversing Images on X and Y Axis

Lesson 12: Mirroring images on X, Y, and Diagonal Axis
Lesson 13: Averaging Two Images

Lesson 15: Combing Images onto a Canvas

Lesson 16: Final Project Description

29

https://introcs.cs.princeton.edu/java/stdlib/

Additional Content:
Tiling Project from Princeton COS126
Duotone Project from Princeton COS126

30

Lesson 01: Image Encoding in Java

Key Concepts:

e Format of Images in Computing
e Java Structure for Modeling Images
e Java Picture Object methods

bob_larry.jpeg

Format of Color Images in Java:

In computing, an image is stored as a two dimensional (2D) collection of pixels. By convention,
the Y Axis are called the Rows and the X Axis are called columns. The origin (0, 0) is located in

the upper left corner.

2 Dimensional Array of Pixels

Y Axis is called Rows

X Axis is called Columns

Origin in Upper Left Hand Corner

Model: A grid of colored squares

0,0

\ This pixel is

at Row 3
Column 2
(2, 3)

31

Java structure for Pixels in Images:

A Picture Object is a grid of 2D Pixels. A Pixel contains four numerical values:

Red
Green
Blue
Alpha

Each value contains a number between 0 and 255. Think of a color channel as a light with a
value of 0 being the light is off, and 255 the light is full strength. The Alpha channel controls the
“transparency” of the pixel. An Alpha of 255 means the pixel is opaque and an Alpha of 0 means
the pixel is transparent. Image formats such as .png, and .gif have “Alpha” channels. “.jpg”
images do not have an Alpha Channel. For most of these lessons, we will work only with Red,

Green, and Blue values.

An HTML color picker works in the same manner.

Color picker <

[E i - T
HEX
#iBe653 o
RGB CMYK HSV HSL
248, 230, 83 0%, 7%, 67%, 3% 53°, 67%, 97% 53°, 92%, 65%

32

When referring to a specific Pixel in a Picture object, the returned object in Java is a Color
Object.

Contents of Pixel 0.0

A Pixel contains 4 Values:

Red
Green
Blue
Alpha

This pixel is at
Row 3 Column 2
(2,3)

Key Commands in stdlib for Java Picture Object:

) i ; Ol bk Jaryipeg
// Load an image into myPicture object File

Picture myPicture = new Picture(“bob_larry.jpeg”);

// Get a Color at Location x, y
Color ¢ = myPicture.get(54, 385);

// Get red value from Pixel p
int redvValue = c.getRed();

// Create new Color Object
Color newC = new Color(123, 18, 55);

// Set pixel to new Color
myPicture.set(54, 385, newC);

33

Lesson 02: Setup Eclipse IDE and ImageManipulation project

Key Terms:

Eclipse is an IDE (Integrated Development
Environment) used for writing and running
code.

A Jar File is a Java Archive file that
encapsulates a a Library of functionality.

We will use the Jar file: “stdlib.jar”

.Jjar means “Standard Library” and it is the

1
2 public class Inagevorker_V1 {

id main(string(] args) {

= public stat

HeEE Mo 5 -0
21, 57231)

library for Java used by Princeton University
in their programming classes.

Most universities and businesses will have
their own custom libraries for Java and other
languages to standardize and provide
functionality for research and industry work.

MIT has the “Processing” IDE and Georgia
Tech has used the Media Computation .jar
file. These libraries change and evolve
throughout the years.

file

Eclipse IDE Overview

Coding Area: Editing current

w - 0-G &

G- ™4 P

Package
Explorer:

public class Inagesorier V1 {

public static veid main(Stringl]

Current
Projects in
Workspace

. e Worsspace FEACH Jaea 2011 - Test image_Promcty 3 wrimage

Qutline:

Structure of

current Java
peac Class
| Console: Output Area for
T Text

34

Workspace

Folder on your computer that stores all the files associated with a Java Project

For Java Imaging, files will include the

Java source code N
stdlib.jar il B
Any images we will edit

Java Project

v '_:?I' ImageManipulationLessons2024

Collection of Libraries, Jar Files, Media) et
» B\ JRE System Library [JavaSE

Files, and your code that works together

\ ¥ (& src
to create the project and program. v i (default package)
You will create Java files in the “src” > I g i

» » |J]| Lesson06.java

folder under the “(default package) > [7) Lesson08 java

Images files are copied and placed in »] Lesson11.java
the project folder for editing. ¥ R Reiercnd L
> (g stdlib.jar
New Images from program are saved & bob_and_larry.jpg
here. @ bob_larry.jpeg
) copy_bob_larry.jpg
& stdlib.jar

35

Jar File: stdlib.jar

v ’1_'—;'- ImageManipulationLessons2024

This library holds all code that allows us > @i, JRE System Library [JavaSE-10]

to use Java to manipulate and process v (# src
Images and Sounds ¥ 3 (default package)

b [J] ImageWorker.java
Written at Princeton University » [J] Lesson06 java

> [J] Lesson08.java
We will import and add this .jar file to » [J] Lesson11.java

the build path to allow our programs to M e

work. @ bob_and_larry.jpg
@ bob_larry.jpeg

) copy_baob_larry.jpg
il stdlib.jar

36

Setup Eclipse, Make New Project, Import Library

Overview: (Details follow)

1. Create new Project “ImageManipulation”
2. Download the stdlib.jar file
3. Copy stdlib.jar file into project and add to build path

Process:

1. Start Eclipse

2. Close the Welcome Tab if needed.

3. Select “File -> New -> Java Project” from the menu bar

4. Name the project “ImageManipulation” and click “Next”

@ [] New Java Project

Create a Java Project

Create a Java project in the workspace or in an external location. 7

Project name: || ImageManipulation |

Use default location

Location:
JRE
© Use an execution environment JRE: JavaSE-10
Use a project specific JRE:
Use default JRE (currently Java SE 11.0.11 [11.0.11]) Configure JREs...
Project layout

Use project folder as roct for sources and class files

© Create separate folders for sources and class files Configure default

Working sets
Add project to working sets New...

Working sets:

& ==
@ Next > Cancel

37

5. Make sure the “Create module-info.java file” is unchecked:

L3
| Allow output falders for source folders
| Create module-info.java file
Default output folder:
Image_Project_01/bin Browse...
@ < Back Cancel

6. Click “Finish”
7. Click on the links below to download the “stdlib.jar” file

https://nebomusic.net/javalessons/stdlib.jar

8. Click “Allow” in your browser if needed.

9. Click on the link below to download the “Bob and Larry” sample image (or find an image of
your own. Make sure it is smaller than 800 by 800 pixels.

https://nebomusic.net/javalessons/ImageManipulation/bob larry.ipeg

10. Find the .jar and image file in your downloads folder:

[] [] [Downloads
<] = ENERIEE a

Favorites Name Size Kind Date Added v
@ AirDrop 2| Media_Manipulation_Library.jar 6.7 MB Java JAR file Today at 11:59 AM
B Recents ¥ bob_larry.ipeg 9KB JPEG image May 7, 2021 at 4:28 PM
¥ Applications
[Desktop
@ Documents
(7 OneDrive
0 Downloads
S creative C...

Locations

[Michaud_...
E; Macintosh...

(E) Bamnta N

38

https://nebomusic.net/javalessons/stdlib.jar
https://nebomusic.net/javalessons/ImageManipulation/bob_larry.jpeg

11. Select the stdlib.jar file and select “copy” (Control - ¢)
12. Go to your project in Eclipse.
13. Click on Project and select “Paste” to put the stlib.jar file into the project

14. Go back to your downloads folder and copy the sample image. Then paste the image into
your project in Eclipse. The structure of the project should look like this:

¥ '_,;—}' ImageManipulation
* B, JJRE System Library [JavaSE-10]

(# src
) bob_larry.jpeg
S stdlib.jar

15. We will now add the .jar file to the build path. Left click once on the stdlib.jar file.
16. Right click on the stdlib.jar file and select “Build Path - Add to Build Path”

17. The project structure will change and you will see “Referenced Libraries” and the .jar file.

¥ '_,j"' ImageManipulation
P B, JRE System Library [JavaSE-10]
(8 src
¥ =, Referenced Libraries
¥ g stdlib.jar
o bob_larry.jpeq
& stdlib.jar

18. Congratulations! You are ready to go and start the next Lesson!

39

Lesson 03: Quickstart: Opening Images

Overview of Steps

1. Create new Java File called “ImageWorker.java”
2. Define String for image path

3. Create myPicture object from the path

4. Write code to show the myPicture

5. Write code to explore myPicture

Process: Create a New Java File called “ImageWorker.java”
1. Open Eclipse and your “ImageManipulation” project.
2. Find the “src” folder in the Project structure.

3. Right click on the “src” folder and select “New -> Class”

40

4. Name the Class “ImageWorker.java”

5. Make sure the box is checked “public static void main(String [] args)”

e e New Java Class

Java Class i

iy The use of the default package is discouraged. @ I
Source folder: Image_Project_01/src Browse. ..
Package: (default) Browse...

~| Enclosing type:

Mame: ‘ ImageWarker
Maodifiers: ° public) package
| abstract [_| final
Superclass: java.lang.Object Browse...
Interfaces: Add...

Which method stubs would you like to create?
public static void main(String[] args)
| Constructors from superclass
Inherited abstract methods
Do you want to add cemments? (Configure templates and default value here)

"| Generate comments

5. Click “Finish”

6. The new .java file should appear in the “src” folder

k4 l:“', ImageManipulation
b B, JRE System Library [JavaSE-10]
¥ &=
¥ £ (default package)
¥ =), Referenced Libraries
b (s stdlib.jar
i bob_larry.jpeg
& stdlib.jar

41

Define String for Image Path:

7. Double click on the “ImageWorker” file.

8. This Java class format uses the public void main(). For now we will write code “inside” of
public void main. Think of this like the “run” function in the previous code we have written.

9. Define a String to point to the location of the sample image “bob_larry.jpeg”
(Lines 7 and 8 in the sample)

_m ImageWorker.java &3 -
1
2 public class ImageWorker {
3
4¢e public static void main(String[] args) {
= 5 // TODO Auto-generated method stub
6
7 // Define path String to image
4 8 String path = "bob_larry.jpeg";
9
10 H
11
12 }
13
14

Create a myPicture instance using the path

10. We will now create a Picture object “myPicture” that will hold the 2 dimensional array of pixel
objects.

11. Lines 10 and 11 show how to create a Picture object “myPicture” using the path String.

4] *ImageWorkerjava &3 -
1
2 public class ImageWorker {
3
4= public static void main(String[] args) {
= 5 // TODO Auto-generated method stub
6
7 // Define path String to image
8 String path = "bob_larry. jpeg";
9
10 // Create a myPicture object
411 Picture myPicture = new Picture(path);
12
13 I
14
15 }
16

42

Write code to show “myPicture”

12. Use the .show() method to display the picture. Lines 13 and 14 show the implementation.

[7] Imageworker.java 5% =

1

2 public class ImageWorker {

40 public static void main(String[] args) {
5 // TODO Auto-generated method stub

6

7 // Define path String to image

8 String path = "bob_larry.jpeg";

9

10 // Create a myPicture object

11 Picture myPicture = new Picture(path);

12

13 // Display myPicture

14 myPicture.show();

15

16 }

17

18 }

19

13. Save and run the code. The image should appear.

[JON] bob_larry.jpeg

43

Congratulations and Short Assignment:

You have successfully tested the Java Image code. Here is a short assignment:
1. Find a picture (use a small picture, less than 512 by 512 pixels).

2. Copy the picture into the Project folder.

3. Create a new String path2 to point to your picture file.

4. Create a new Picture Object and open the Picture using the .show() function.

[J] Imageworker java &3

1

2 public class ImageWorker {

3

4e public static void main(String[] args) {
&5 // TODO Auto-generated method stub

6

7 // Define path String to image

8 String path = "bob_larry.jpeg";

9

10 // Create myPicture object

11 Picture myPicture = new Picture(path);

12

13 // Display myPicture

14 myPicture.show();

15

16 }

17

18 }

19
[JoN] bob_larry.jpeg

44

Lesson 04: Java Picture Functions

04 Java Picture Functions

Types of Functions for Picture Object
1. Constructors

2. Accessor Functions

3. Viewing Functions

4. File Writing Functions

a1
¥ GE Picture

@ main(String[]) : voic
& height

o image

o isDisposed

o lsOriginUpperLeft
o isvisible

o jframe

o fitle

o width

& Picture(int, int)

& Picture(File)

@ Picture(String)

& Picture(Picture)

@ actionPerformed (ActionEvent)
w createGUI()

& equals(Object)

@ got{int, int)

@ gotlLabel() t
@ QetRGB(Int, int)

@ hasAlpha() : b

& hashCode()

@ height()

@ hide()

@ isVisible()

@ save(File) : v

@ save|String)

@ setlint, int, Color)

@ setOriginLowerLeft()
@ setOriginUpperLeft()
@ setRGB{int, int, int)
@ setTitle(String)

@ showi()

& 19String()

u validateColumnindes(int)
B validsteRowindex(int)
@ widthi)

1. Constructors: Build a Picture object and return to program

String path = “bob_larry.jpeg”;
Picture myPic = new Picture(path);

Type Example

Picture() Picture myPic = new Picture();

Picture(String) Picture myPic = new Picture(path);

Picture(int, int) Picture myPic = new Picture(668, 488);

Picture(Picture) | Picture myPicA
Picture myPicB

new Picture(path);
new Picture(myPicA);

Description

v 3, Picture
@ © Picture()
@ ° Picture(String)
@ ¢ Picture(int, int)
@ ° Picture(Picture)
of Picture(Bufferedimage)

Creates a picture object mPlc with white pixels that is 200

pixels wide by 100 pixels tall.

Creates a picture object myPic out of an image file located at

path.

Creates a picture object myPic with white pixels that is 600

pixels wide by 400 pixels tall.

Creates a picture object myPicB that is a copy and separate

object from myPicA.

45

2. Accessor Functions: Gets information from Picture

String path = “bob_larry.jpeg”; Accessor functions usually
Picture myPic = new Picture(path); start with the word “get”
Type Example Description

height() int height = myPic.height(); Returns an integer representing

the height in pixels of the picture.

width() int width = myPic.width(); Returns an integer representing
the width in pixels of the picture.

get(int x, inty) Color ¢ = myPic.get(1@8, 1€0); Returns a Color object

3. Viewing Functions: Displaying Picture to Screen

String path = “bob_larry.jpeg”;
Picture myPic = new Picture(path);
myPic.show();

Type Example Description

show() myPic.show(); | Displays the Picture myPlc to the
computer screen in a Java Applet.

46

4. File Writing Functions: Saving data to image files

String path = “bob_larry.jpeg”;
Picture myPic = new Picture(path);
String newPath = “newPicture.jpg”;
myPic.save(newPath);

Type Example Description
save(String) String newPath = “newPicture.jpg"”; Write the contents of a Picture
object to the file system as a .jpg
myPic.save(newPath); file. Remember to use the file

extension “.jpg”.

In some computer systems you
may have to specify a specific
path back to the Project in the
Workspace.

47

Lesson 06: Visiting Pixels: writing the setRed() method

Objective: Write a function to visit all the Pixels in a Picture object and set the Pixels to the
same red value.

Skills Needed:
Open a Picture Object
Use the get(x, y) and Color Objects
Using For Loops in a “nested” style
Using the .show() method

Work-through Lesson - Step by Step Instructions

L 2o R —

Overview of Process:

1. Open or write the ImageWorker.java to open and display the sample
picture

2. Define the function
public static Picture setAllRed(Picture p, int red)

3. Create a copy of the picture
4. Use nested for loops to change all red pixel values of the copy.
5. Create a new class called “Lesson_06"

6. Test the function and show in the void main() function of “Lesson_06"

48

Open or write the ImageWorker.java

1. Open Eclipse and find the Project you created from 03 Quickstart Opening Exploring
and Viewing Images. If you do not have this code, use the directions from 03 to set up
the project.

2. The starting code is shown below:

[7] Imageworker.java 5% =

1

2 public class ImageWorker {

3

4e public static void main(String[] args) {

= 5 // TODO Auto-generated method stub

6

7 // Define path String to image

8 String path = "bob_larry.jpeg";

9
10 // Create a myPicture object
11 Picture myPicture = new Picture(path);
12
13 // Display myPicture
14 myPicture.show();
15
16 }
17
18 }
19

49

Define function setAl1Red(Picture p, int red)
3. Start below the curly bracket the closes the main() function.

4. Write the function definition for setAl11Red(Picture p, int red)
(Lines 18 through 22 in example)

5. Notice that we have a ‘return null’ is written on line 21. This is a placeholder for a
needed return statement.

[4] *ImageWorker.java 53 =

1

2 public class ImageWorker {

3

4e public static void main(String[] args) {

&5 // TODO Auto-generated method stub

6

7 // Define path String to image

8 String path = "bob_larry.jpeg";

9
10 // Create a myPicture object
11 Picture myPicture = new Picture(path);
12

13 // Display myPicture

14 myPicture.show();

15

16 }

17

18 // Set the Red Value for all Pixels

19= public static Picture setAllRed(Picture p, int red) {
20
21 return null;
77 ¥
23
24 '}
25

50

Create a copy of the parameter Picture p

6. Inside the function, create a Picture object named “output” to hold a copy of the
incoming picture.

7. Change the return statement to return output.

// Set the Red Value for all Pixels
public static Picture setAllRed(Picture p, int red) {

// create copy named output

Picture output = new Picture(p);

// Return the output
return output;

Note the process:
a. Define output

b. Do the work

c. Return the output

51

Setup nested for loops to visit each pixel value

We are going to visit each pixel and change the red values. This is the “Do the work”
part of the process

8. Write a for loop to move through all the y values
9. Write a for loop inside the y loop for the x values.

10. Notice the placement of the curly brackets to “nest” the Loop. We will go one row at
a time and visit each value in the row. The next page will outline how to change the
value.

// Set the Red Value for all Pixels
public static Picture setAllRed(Picture p, int red) {

// create copy named output
Picture output = new Picture(p);

// Visit all the Pixels and change red value
for (int y = 0; y < output.getHeight(); y++) {

for (int x = 0; x < output.getWidth(); x++) {
+
}

// Return the output
return output;

52

Get pixel at (x, y) and change red value

Now we will get the pixel at x, y from the output copy and change the red value.

11. Use the .get() function to get the Color at (x, y) from the loop

12. Create a new Color substituting input red and existing getGreen() and getBlue()

13. Set the Color value of the output image at pixel x, y with new Color.

// Set the Red Value for all Pixels
public static Picture setAllRed(Picture p, int red) {

// create copy named output
Picture output = new Picture(p);

// Visit all the Pixels and change red value
for (int v = @; y < output.height(); y++) {

for (int x = @; x < output.width(); x++) {
// Get Color at Pixel x, y
Color ¢ = output.get(x, v);

// Create new Color with red value
Color newC = new Color(red, c.getGreen(), c.getBlue());

// Set the new Pixel color at x, y
output.set(x, vy, newC);

}

// Return the output
return output;

53

Create a new class called “Lesson_06"

We are going to start making separate classes for each lesson to test the functions.
14. Right click on the “src” folder and select “New-Class”

15. Name the class “Lesson_06"

16. Make sure the box “public static void main(String [] args) is checked.

17. Click “Finish”

LA New Java Class
Java Class =
1, The use of the default package is discouraged. &
Source folder: Image_Project_01/src Browse...
Package: (default) Browse...

Enclosing type:
MName: | Lesson_06
Modifiers: ° public package

abstract final

Superclass: java.lang.Object Browse...
Interfaces: Add....

Which method stubs would you like to create?
public static veid main{String[] args)
Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

Generate comments

I:?:I

18. You should now be in the new class “Lesson_06"

54

Test the setAllRed() in the main function of Lesson_06
19. Go back to the main function

20. Use the ImageWorker.setAllRed() function to create a new Picture object named
“zeroRed” with red values set to 0. (Experiment with different values)

21. Set the Title of zeroRed to “No Red”

22. Use the .show() function to display the original and changed picture.

1

2 public class Lesson_06 {

3

4e public static void main(String[] args) {
5 J// TODO Auto-generated method stub

b

7 // Define path String to image

B String path = "bob_larry.jpeg";

9
18 // Create a new myPicture object
11 Picture myPicture = new Picture(path);
12
13 // Test the setAllRed() function
14 Picture zeroRed = ImageWorker.setAllRed(myPicture, @);
15
16 // Set Title of zeroRed
17 zeroRed.setTitle("No Red");
18
19 // Display myPicture
20 myPicture.show();
21 zeroRed.show();
22
23 }
24
25 }
26

55

Run the Program and note the two Images

o0 e bob_larry.jpeg

Exercises:

1. In the main() function of Lesson_06, use ImageWorker.setAllRed() with the “Bob and
Larry” picture and create and display a picture with red set to 255.

2. Import your own picture (less than 512x512 pixels) and try the setAllRed() function
with different red values.

o0 e bob_larryjpeg) All Red

56

Lesson 07: Assignment: setGreen() and setBlue()

07 Assignment: Implement setAllGreen() and setAllBlue()

Objective: Write functions to visit all the Pixels in a Picture object and set the
green or blue pixels to the same value.

Skills Needed:
Open a Picture Object
Use the get(x, y) and sef() functions
Using For Loops in a “nested” style
Using the .show() method

Requirements Lesson - You have to write code from list of Requirements

Requirements

1. Open the “ImageWorker” project with setAllRed()

2. Write the Code Stubs as shown here for setAllGreen() and setAllBlue()

3. Complete the code to implement the setAllGreen() and setAllBlue() functions.

4. Create a Java class called “Lesson_07” Using your own image, test and show the
ImageWorker.setAllGreen() and ImageWorker.setAllBlue() functions with at least two
different values for each function.

5. Display the original and the test images (You will have 5 images total)

57

Lesson 08: Writing makeGrayscale() method

[NN) bob_larry.jpeg

Objective: Write a function to visit all the Pixels in a Picture object and compute
grayscale value to create a grayscale image.

Skills Needed:
Open a Picture Object
Use the get(x, y) and
set(x, y) functions.
Use the Color object and getRed(), getGreen(),
and getBlue() methods
Using For Loops in a “nested” style
Reading Math formulas and converting to Java
Using the .show() method

Work-through Lesson - Step by Step Instructions

58

Overview of Process:

1. Open ImageWorker.java file.

2. Define the function stub in ImageWorker.java
public static Picture makeGrayscale(Picture p)

3. Create a copy of the picture
4. Use nested for loops to visit, compute gray value, and write in each pixel of copy.

5. Create Lesson_08 class and test in the main() function.

Open ImageWorker.java file

1. Open Eclipse and find the Project “ImageManipulation”.

2. Open the ImageWorker.java file Leave the setAllRed(), setAllBlue() and
setAllGreen() functions in the code. (Do not delete anything!)

3. Scroll down to below the setAllBlue() function. (Towards the end of the file)
Define function makeGrayscale(Picture p)
4. In ImageWorker.java, find a starting place below your “setAll” functions.

5. Write the function definition for makeGrayscale(Picture p)

6. Notice that we have a ‘return null’ is written in function. This is a placeholder for a
needed return statement.

// Make Gray scale image
public static Picture makeGrayscale(Picture p) {

return null;

59

Create a copy of the parameter Picture p

7. Inside the function, create a Picture object named “output” to hold a copy of the
incoming picture.

8. Change the return statement to return output.

// Make Gray scale image
public static Picture makeGrayscale(Picture p) {

// create copy named output
Picture output = new Picture(p);

// Return the output
return output;

Note the process:
a. Define output

b. Do the work

c. Return the output

60

Setup nested for loops to visit each pixel value

We are going to visit each pixel to compute the new gray scale value. This is the “Do
the work” part of the process

9. Write a for loop to move through all the y values
10. Write a for loop inside the y loop for the x values.

11. Notice the placement of the curly brackets to “nest” the Loop. We will go one row at
a time and visit each value in the row. The next page will outline how to compute the
gray scale value.

// Make Gray scale image
public static Picture makeGrayscale(Picture p) {

// create copy named output
Picture output = new Picture(p);

// Visit all the Pixels and compute gray value
for (int y = @; y < p.getHeight(); y++) {

for (int x = @; x < p.getWidth(); x++) {
}
}

// Return the output
return output;

61

Compute gray scale value and assign to Pixel

Now we will get the red, green, and blue values for each pixel and compute the
grayscale value. The math is:

gray = (red + green + blue) / 3

Thus, we will average the color values of each pixel. There are other formulas for
computing gray scale. (See GIMP resource here) We are using the average formula.

The general algorithm is written below. We will implement the code on the next page.

Algorithm: Convert to Gray scale

For Each Color ¢ at (x, y) from source Picture:
R =red from Color ¢
G = green from Color c
B = blue from Color ¢
gray = (R+G+B) /3
Create new Color with gray values
Set color of output pixel at (x, y) to new Color

MNote: Try this yourself inside
the nested loop before
looking at next slide

62

https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

Coding for Grayscale average algorithm

12. Use the algorithm and code sample below to implement creating a new color for
each pixel

Algorithm: Convert to Gray scale

For Each Color ¢ at (x, y) from source Picture:
R =red from Color ¢
G = green from Color ¢
B = blue from Color ¢
gray = (R+G+B) /3
Create new Color grayColor with gray values
Set color of output at (x, y) to grayColor

public static Picture makeGrayscale(Picture p) {

// create output
Picture output = new Picture(p);

// Visit all the Pixels and compute gray value
for (int y = @; y < output.height(); y++) {

for (int x = 8; x < output.width(); x++) {

// Get pixel color
Color ¢ = output.get(x, vy);

// Get Red, Green, and Blue
int red = c.getRed();

int green = c.getGreen();
int blue = c.getBlue();

// Math
int gray = (red + green + blue) / 3;

// Create new Color
Color grayColor = new Color(gray, gray, gray);

// Set pixel at x, y to grayColor
output.set(x, vy, grayColor);

}

// Return the output
return output;

63

Create Lesson_8 Class for Testing

13. Right click on the “src” folder and select “New-Class”

14. Name the class “Lesson_08"

15. Make sure the box “public static void main(String [] args) is checked.

16. Click “Finish”

e ® New Java Class

Java Class oy

i, The use of the default package is discouraged. @
Source folder: Image_Project_01/src Browse...
Package: (default) Browse...

| Enclosing type:

Mame: | Lesson_08
Modifiers: ° public package
| abstract [final
Superclass: java.lang.Object Browse...
Interfaces:

Add...

Which method stubs would you like to create?
public static void main{String[] args)
| Constructors from superclass
Inherited abstract methods
De you want to add comments? {Configure templates and default value here)

| Generate comments

64

Test Function and show in void main() of Lesson_08
17. Find the static void main() function in Lesson_08

18. Add code to create a new Picture object using the ImageWorker.makeGrayscale()
function.

19. Call the .show() command to see the gray scale picture.

1
2 public class Lesson_@8 {
3
4o public static void main{String[] args) {
L5 // TODD Auto-generated method stub
6
7 // Define path String to image
8 String path = "bob_larry.jpeg";
9
10 // Create myPicture object
11 Picture myPicture = new Picture(path);
12
13 // Test Gray scale
14 Picture gray = ImageWorker.makeGrayscale(myPicture);
15 gray.setTitle("Gray");
16
17 //Display muPicture
18 myPicture.show();
19 gray.show();
20
21 }
22
23 }
24
[XN] bob_larry.jpeg

65

Exercises:

1. Import your own picture (less than 512x512 pixels) test with the
makeScaleFunction(). Show the original picture and the grayscale picture.

2. For a challenge, write a function makeLuminosity(Picture p) and implement the
Luminosity math as shown at: https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html.

The graylevel will be calculated as

Luminosity =021 xR+0.72x G+ 0.07 x B

You will need to cast between int and double datatypes. Test the new function in the
void main().

66

https://docs.gimp.org/2.6/en/gimp-tool-desaturate.html

Lesson 09

09 Writing Images to Files

Objective: Now that we can do some pixel changes to
images, we want to save the new pictures to the file
system.

Skills Needed:
Open a Picture Object
Use one of our functions to create an edited picture
Define Strings for the output path and output name
Use the .write() function to save the new picture to
the file system.

Work-through Lesson - Step by Step Instructions

Note: Depending on your
computer, you may have
to define the Path String

to a very specific location
on your file system.

This example uses
OSX / Unix / Linux
file structures.

09 Writing Images to Files Procedure

1. Open Lesson_08 java file. Use the
ImageWorker.makeGrayscale() function to make gray
scale image.

2. Define a String fileName that is the name and
extension of the file you wish to save.

3. Use the .save() function to save the gray scale image.

4. Use F5 to refresh the Project and see the new file.

Note: Depending on your
computer, you may have
to define the Path String

to a very specific location
on your file system.

This example uses
OSX / Unix / Linux
file structures.

67

1. Open Lesson_08.java file and make a new image

1. Open the Lesson_08 file and
create an image object from one of
your images.

2. Use the makeGrayscale() function
to make a black and white image.

3. Use the .show() function to show
and test both images.

2 public class Lesson_@8 {

public static void main(String[] args) {
Auto—generated method stub

Define path String to image
String path = “"bob_larry. jpeg";

Create myPicture object
Picture myPicture = new Picture(path);

€51 Luray Cale
Picture gray = ImageWorker.makeGrayscale(myPicture);
gray.setTitle("Gray");

myPicture,show();
gray.show();

2. Define String fileName that has name and extension

1. Add code to define String
fileName has name and file
extension for file you wish to save.

public class Lesson@8 {

public static void main(String[] args) {
Auto=-generated method stub

Define path String to image
String path = “bob_larry.jpeg";

Create myPicture object
Picture myPicture = new Picture(path);

Test Gray scale

Picture gray = ImageWorker.makeGrayscale(myPicture);

£ Define name
String fileName = “grayBobLarry.jpg";

Display myPicture
myPicture.show();
gray.show();

68

3. Use the .save() function to save the gray scale image

1. Use the .write(String path)
function to save the Picture object to
the file system.

2. Comment out the .show()
commands for myPicture and gray.

3. Run the Code. You will not see
any immediate results. (Go to next
slide . . .)

A

public class Lesson@8 {

public statiec void main(Stringl] args) {
// TODD Auto-generated method stub

// Define path String to image
String path = "bob_larry.jpeg";

// Create myPicture object
Picture myPicture = new Picture(path);

// Test Gray scale
Picture gray = ImageWorker.makeGrayscale(myPicture);

// Define name
String fileName = “grayBobLarry.jpg";
gray.save(fileName);

// Display myPicture
//myPicture, showl);
//gray.show()

5. Refresh the Package Explorer

1. Right click on the Project Name
“ImageManipulator” and select
“Refresh” to refresh the project and
see the file written to the system.

2. You can also press F5 to refresh
the view.

3. Double click on the file to see the
saved image.

We will use the .save() function to save
images we create and edit in future lessons.

69

10 Assignment: Implement makeNegative() Function

Objective: Implement makeNegative() Function to “reverse” the colors of an
image.

Skills Needed:
Open a Picture Object
Use the get(x, y), Color Objects, and math operations
Using For Loops in a “nested” style
Read and interpret mathematical procedure (algorithm)
Use the .save() function to save your work.

Requirements Lesson - You have to write code from list of Requirements

10 Assignment: Algorithm for Negative Images

Algorithm: Negative Images

For each Color at pixel (x, y) of input Picture:
Get Color ¢ from pixel at (x, y)
R = red from Color ¢
G = green from Color ¢
B = blue from Color ¢
// Subtract each color channel from 255 (Max value)
newRed =255 -R
newGreen =255 -G
newBlue =255 -R
Create a new Color newC with newRed, newGreen, and newBlue values
Assign newColor to output pixel at (x, y)

70

10 Assignment: Requirements

“ " // Make Negative
1. Open the "ImageWorker” class. public static Picture makeNegative(Picture p) {
2. Scroll down and Write the Code Stub as return null;
shown for makeNegative() function. }

3. Complete the code to implement the
makeNegative() function.

4. Create a new class called “Lesson_10"

5. Using “Bob and Larry” image, test and
save your negative as “NegativeBob.jpg”.

6. Test the makeNegative() on your own Hint: Use Assignment 08

image and save as “MyNegative.jpg”. ::::tslt?gnn:s.kaeg;?ggﬁlggtting

up makeNegative()

4l

Lesson 11 Reversing Images on X and Y Axis

Objective: Write functions to visit all the Pixels in a Picture object and output a image
Reversed on the X or Y axis.

Skills Needed:
Open a Picture Object
Use the get(x, y) and
Color objects.
Using For Loops in a “nested” style
Iterating backwards and forwards through loops

Work-through Lesson - Step by Step Instructions for X

Assignment Lesson - Implement from Requirements for Y

72

Overview: Reversing Images on X Axis:

1. Open the ImageWorker.java file.

2. Define function stub for reverseOnX(Picture p)
3. Setup output object and nested for Loop

4. Implement the pixel color transfer

5. Create new class “Lesson_11".

6. In class Lesson_11 import a picture and test the ImageWorker.reverseOnX()
function.

Open the ImageWorker.java file
1. Open the ImageWorker.java

2. Scroll down below the functions to find a line define the new function. Be sure to
leave all the functions you have defined so far as you will need them in later lessons.

3. Write the function sub for reverseOnX(Picture p) in the ImageWorker class. Note the
use of return null for the sub.

// Reverse on X function
public static Picture reverseOnX(Picture p) {

return null;

73

Setup the output object and next for loop:
4. Create a Picture object “output”

5. Setup nested for loop iterating through y and x axis:

// Reverse on X function
public static Picture reverseOnX(Picture p) {

// Setup output Picture
Picture output = new Picture(p);

// Do the Work - nested for loop
for {int yv = 0; y < p.getHeight(}; y++) {
for (int x = 0; x < p.getwWidth(); x++) {

}
}

// Return statement
return output;

74

Concept: Reversing values on Row of Pixels

Before we implement the math to transfer pixels, let us visualize a “row” of pixels that
that only hold one number (like an Array of integers):

100 150 200 225 263

Each location on the row has an address. In the above example of five elements the
addresses of the “x” position of each element would be:

o | 2 3 W

100 150 200 225 263

To reverse the numbers, we will copy them into a blank array in reverse order:

O | 2 3 4

We are going to setup a T-Chart that tracks the values of “x” (index of original row) and
“‘newX” (values for blank array):

X | hew X
s bt Note that the mathematical
| B relationship between x and
P | newX is:
3
| newX =4 -x
L1 o

75

So, we are going to “get” the Color from the original Row at “newX” and then write the
Color at the copy row at X:

x=0 x=1 x=2
newX =4 newX =3 newX =2
o 1 2 3 4% o 1 2 34 o 1 2 34
I 100 | 150 ‘ 200 l225 | 263 I I 100 | 150 ‘ 200 \225 | 263 ‘ I 100 ‘ 150 ‘ 200 l225 ‘ 263 I
0 2 3 4 O 172 3 4 O 1 2 34
263 | { | 23 | 225 { | 263. | 225 | 200 | | |
Write value of Source Row at newX ‘Write value of Source Row at newX Write value of Source Row at newX
to copyRow at x to copyRow at x to copyRow at x
x=3 x=4
newX =1 newX =0
o 1 2 3 4 N N . -
l 100 | 150 ‘ 200 |225 | 263 ‘ \ 100 | 150 I 200 |225 | 263 ‘
O 1 23 4 O 1 2 34
263. | 225. 200 150 { | 263. | 225. 200 150 l 100 ‘
Write value of Source Row at newX Write value of Source Row at newX
to copyRow at x to copyRow at x

Thus, for each row of the image, we are going to work forwards counting on x and then
create a new variable newX = width - x - 1. Then we transfer the color from the source

picture at newX to the output picture at x.

for (int x = @; x < p.width(); x++) {
f/ set newx to move backwards
int newX = p.width{() - 1 = x;

/! Get source color
Color ¢ = p.getinewX, y);

// Assign color to output
output.set(x, y, c);

76

Implement the pixel color transfer
6. Setup a “newX” that is equal to the width of the image - 1 - the current x position.

7. Get the source Color c at
(newX, y)

8. Write the source Color c¢ to the output pixel at (x, y)

// Reverse on X function
public static Picture reverseOnX(Picture p) {

// Setup output Picture
Picture output = new Picture(p);

// Do the work - nested for Lloop
for (int yv = @0; y < p.height(); y++) {
for (int x = @; x < p.width(); x++) {
// set newX to move backwards
int newX = p.width() - 1 - x;

J// Get source color
Color ¢ = p.get(newX, y);

// Assign color to output
output.set(x, y, c);

}

J// Return statement
return output;

77

Create a new Class called “Lesson_11"

9. Right click on the “src” folder.

10. Select “New - Class”

11. Name the class “Lesson_11"

12. Make sure the box “public static void main(String [] args)” is checked

13. Click “Finish”

| JoN New Java Class
Java Class —
1, The use of the default package is discouraged. @
Source folder: Image_Froject_01/src Browse...
Package: (default) Browse...

| Enclosing type:

MName: |Lessun_‘| 1
Modifiers: °pub|ic package
| abstract [_| final
Superclass: java.lang.Object Browse...
Interfaces:

Add...

Which method stubs would you like to create?
public static void main(String[] args)
| Constructers from superclass
Inherited abstract metheds
Do you want to add comments? (Configure templates and default value here)

| Generate comments

78

Test and write output to File system.

14. Go to the main() function on Lessson_11

15. Use the ImageWorker.reverseOnX() to make a new Picture object called reverseX
16. Set the fileName String

17. Use the .write() function to save reverseX as “reverseX.jpg”.

public class Lessonll {

public static void main(String[] args) {
// TODO Auto-generated method stub

// Define path String to image
String path = "bob_larry.jpeg";

// Create myPicture object
Picture myPicture = new Picture(path);

// Create mirrorX
Picture reverseX = ImageWorker.reverseOnX(myPicture);

// Save picture to file
String fileName = "reverseX.jpg";
reverseX.save(fileName);

79

Assignment: Implement reverseOnY(Picture p)

1. In the ImageWorker.java file, create a function stub public static Picture
reverseOnY (Picture p)

2. Implement code to reverse image on Y axis. (Hint, you can change the nested loop to
move through X first).

for (int x = 9; x < p.width(); x++) {

for (int y = 9; y < p.height(); y++) {

}

3. Test ImageWorker.reverseOnY() in main function of Lesson_11 and write results of
test to File system as “reverseY.jpg”

// Reverse on Y
public static Picture reverseOnY(Picture p) {

return null;

80

12 Assignment: Mirror on X, Mirror on Y, Mirror on Diagonal

Objective: Write functions to visit all the Pixels in a
Picture object and output a image Mirrored on the X, Y,
or Diagonal axis.

Skills Needed:
Open a Picture Object
Use the get(x, y) Accessors and Modifiers

Using For Loops in a “nested” style
Developing techniques for iterating halfway
through loops

Assignment Lesson - Implement from Requirements

12: Requirements

1. On ImageWorker.java, create a function stub
public static Picture mirrorOnX(Picture p)

2. On ImageWorker.java, create function stub
public static Picture mirrorOnY(Picture p)

3. On ImageWorker.java, create function stub
public static Picture mirrorOnDiag(Picture p)

4. Implement code for functions.

5. Create a new Java file called “Lesson_12"

6. Test in main() function of Lesson_12 and write
outputs to File System

Hint: These work best on

square images

81

Lesson 13 Averaging Pictures

13 Averaging Pictures

Objective: Write function to combine (average) two images.

Skills Needed:
Finding two images with same dimension (512 x 512)
Definition of mean (average) and formula
Iterating through Pixels and computing mean
Writing pixels to output image
Saving to file

Work-through Lesson - Step by Step for averaging to Arrays
Assignment Lesson - Implement averaging for images.

Averaging Pictures: Mathematical Background

Mean: Average of a set of numbers

Example:
x=10
y=6

Mean of x and y is computed as:
mean = (x +y)/ 2
mean=(10+6)/2
mean=16/2=8

mean = 8

82

Averaging Pictures: Apply to array of numbers

Mean: Average of a set of numbers

Example:
A= |10 8 7 12 15
= |4 10 9 7 5
avg =|7 9 8 9.5 10

Algorithm: Average Arrays

Given Array A
Given Array B // same size as A

Initialize C = new Array size of A
Fori=0,i<Size of A,i=1i+1
newValue = (A[i]+B[i]) / 2

C at index i = newValue

Return C

Work through: Average two Arrays

Overview:

1. Create new Java Class “ArrayTester.java”

2. Write function public static double [] averageArrays()
3. Write a function public static void printArray()
4. Create two Arrays in void main()

5. Test function and print results.

Algorithm: Average Arrays

Given Array A
Given Array B // same size as A

Initialize C = new Array size of A
Fori=0,i<Sizeof A,i=1i+1
newValue = (A[i]+B[i]) / 2

C at index i = newValue

Return C

83

1. Create new Java Class “ArrayTester.java”

* te

Java Class

Overview: T Pl g g @)

1. Right click on the (default package) icon
and select “New -> Class”

2. Name the class “ArrayTester” and make
sure the option “public static void
main(String [] args)” is checked.

3. Click “Finish”

2a. Start function averageArrays(double [] a, double [] b)

ovewiew 2 public class ArrayTester {

1. Start below the void main()
function and write the function
stub for public static double []
averageArrays(). (Lines 9
through 13 in example)

}

Average Arrays Function
public static double [] averageArrays(double [] a, double [] b) {

return null;

2. Note the return null as a
placeholder for now.

84

2b. Define output for averageArrays() function

Overview:

1. Inside the averageArrays()
function, initialize an array
named output that is the
same length as the input
array a.

2. Change the return
statement to return output.

// Average Arrays Function
public static double [] averageArrays(double [] a, double [] b) {

// Initialize output array

double [] output = new double [a.length];

// Return output object
return output;

2c. Use for loop to do math and average elements of aand b

Overview:

1. Implement algorithm below
and use for loop to iterate
through the input arrays and
compute mean.

Algorithm: Average Arrays

Given Array A
Given Array B // same size as A

Initialize C = new Array size of A
Fori=0,i<8SizeofA,i=1+1
new Value = (A[1]+B[i])/ 2

C at index i = newWValue

Return C

// Average Arrays Function
public static double [] averageArrays(double [] a, double [] b) {

// Initialize output array
double [] output = new double [a.length];

{/ Do the work: Use for loop and compute averages
for (int i = @; i < a.length; i++) {

// Compute mean at index 1

double newValue = (a[i)+b[i)) / 2;

// Write mean to output at index 1

output [i] = newValue;
}

// Return output
return output;

object

85

3. Write function printArray(double [] a)

Overview:

1. Implement the function
printArray() that will display
the values of an array to the
console.

2. Define this below the
averageArrays() function.

3. We will use this later.

// Printing contents of Array
public static void printArray(double [] a) {

String output = "[";

for (int i = @; i < a.length-1; i++) {
String value = String.valueOf(alil);

output += value + ", ";

}
output += String.valueOf(ala.length-1]) + "]";

System.out.println(output);

4. Create two Arrays in void main()

Overview:

1. Go back to the void main()
function and define two
Arrays a and b as shown on
lines 7 through 10.

i public class ArrayTester {
2
4e public static void main(String[] args) {
5 // Auto-generated method stub
6
7 // Create Arrays a and b

s 8 double [] a = {10, 8, 7, 12, 15};
(s]

.10 double [] b = {4, 10, 9, 7, 5};

11

12

13 }

14

[

86

5. Test function and print results.

1. Use the averageArrays()
function to create a new array
called c.

2. Use the printArray()
function to display the output.

3. Run the code. The values
of the output in the console
should be the average of
each element of the input.

Lastname_Java_imaging - image_Project_01/sro/ArrayTesterjava - Eclipse SDK
-0-Q- W FG =5

=0 i derwyTewter pva I1

public class ArrayTester { + @, Armay
@ ma

public static veid main(String[] args) { & v

Aut ted method stub @ prisn

Create Arrays a and b
double (] a = {10, 8, 7, 12, 15k

double (] b = {4, 10, 9, 7, 5};

verage array c
= averageArraysia, b);

double

int the values of ¢
printArray(c);

© consie 12 o Rb = =]

11.0.1 jiContentsHome/bindava [May 1

rany! Javal avairtuaMacrines ik

<terminateds ArrayTester | Lava Appication] /L
[7.9, 9.0, 8.8, 9.5, 18.0]

sisdonbia(], doubh
uibie]])

R -]

5, 2021, 12:38:58 P

87

Averaging Images: Overview of Algorithm

Algorithm: Averaging Pictures

Given: Picture A
Given: Picture B // Same width and height as A

Initialize output Picture C as copy of A // Or blank image at same size as A
For each pixel in A at location (x, y))
Initialize colorA as Color at pixel(x, y) in A
Initialize colorB as Color at pixel(x, y) in B
Initialize averageRed as (colorA’s red + colorB’s red) / 2
Initialize averageGreen as (colorA’s green + colorB’'s green) /[2
Initialize averageBlue as (colorA’s blue + colorB’s blue) / 2
Create new Color colorC with values of (averageRed, averageGreen, averageBlue)
Set color at output(x,y) as colorC

Return Picture C

Averaging Images: Setup

We will now apply the skill of averaging values in 1D Arrays to images.

1. Find two images of same size. | suggest you use 512 x 512 pixels. Save these pictures to your
“ImageManipulation” area on Eclipse.

2. Go to the ImageWorker.java file

3. Define the function stub for
public static Picture averagePictures(Picture a, Picture b)

4. Implement averagePictures() using algorithm on previous slide
5. Create a new Java class called “Lesson_13"
6. In the main method of Lesson_13.java, define String paths for two pictures and create Picture objects.

7. Test the ImageWorker.averagePictures() function on your two pictures in Lesson_13.java

88

Averaging Images: Requirements

1. Find two images of same dimensions. You can use PictureA and PictureB as
samples to get started.

PictureA: http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg

PictureB: http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg

2. Implement the averagePictures(Picture a, Picture b) function in ImageWorker
3. Create new class “Lesson_13”

4. Test the ImageWorker.averagePictures(Picture a, Picture b) function in the void
main() of Lesson_13.

5. Save the output of the average image to the file system.

6. Make sure to run this algorithm on your own pictures in addition to the samples.

89

http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg
http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg
http://nebomusic.net/javalessons/ImageManipulation/bob_larryV2.jpg
http://nebomusic.net/javalessons/ImageManipulation/jimmy_jerry.jpg

Lesson 14 Resizing Images

resize() Method Operation

266-by-216

NoOoOghkhOWN-=-2O0O

0 1

H:

resize () Method Operation:

23 45 6 7

WN=20

01 23

90

resize () Method Operation:
0 1(2)3 456 7

Of EEus__ = 0 ()2 3
1 ©
2 1
3 2
4 3
5
6
7
resize () Method Operation:
01 23 5 6 7
@ . 0 1 3

~NObh WN -

91

resize () Method Operation:

01 23 45 7
© M 2
1 ©
2 1
3 2
4 3
5
6
7
resize () Method Operation:
01 23 45 7
. 2 3

0
©
4
5
6
7

SN

92

public static Picture resize(Picture p, int newWidth, int newHeight)

// Create output object
Picture output = new Picture(newWidth, newHeight);

// Calculate delta values
double deltaX = p.width() * 1.0 / newWidth;
double deltaY = p.height() * 1.8 / newHeight;

// Loop and Move Pixel values
for (int y = @; y < output.height(); y++) {

for (int x = @; x < output.width(); x++) {

int targetX = (int) (deltaX = x);
int targetY = (int) (deltaY * y);

Color c = p.get(targetX, targetY);
output.set(x, vy, c);

}

// Return output object
return output;

93

Lesson 15 Creating New Image and Combining Images

Objectives: Create a Blank Picture Object to a Specific Size
Write a function to Copy pixels from one
Picture object to Another.

Skills Needed:
Using Nested For Loops with Picture objects
Getting and Setting Color Values from Pixels
Using functions we have already written to
create new edited Picture Objects

Work-through Lesson - Step by Step for creating blank Object and placePicture()
function.

Overview of Process:

1. Create a new class called “Lesson_15"

2. Use the Picture(int x, int y) constructor to create a blank canvas in the main method
of “Lesson_15"

3. Go to the “ImageWorker” file and implement the placePicture() function.

4. Go back to “Lesson_15" and experiment with placing Picture objects, using effects
functions, and resizing existing pictures.

5. Write canvas Picture object to file.

94

Create new Java class “Lesson_15” and import two pictures
1. Create new Java Class “Lesson_15".

2. In the main method, import two pictures. You may use any pictures you like. | am
going to use the rose.jpg and bob_larry.jpg.

1

2 public class Lesson_15 {

3

4e public static veid main(String[] args) {
5 I/ Auto—-generated method stub
B

7 // Define path String to image

8 String pathBob = "bob_larryV2.jpg";
9 String pathRose = "rose.jpg";

10

11 Picture bob = new Picture(pathBob);
12 Picture rose = new Picture(pathRose);
13

14 }

15

16 }

17

Use the Picture(int x, int y) constructor to create a blank canvas.

3. We will now make a blank Picture object called “canvas” using the Picture(x, y)
constructor.

4. Because the source pictures are 512 x 512 pixels, we are going to make the canvas
2048 wide and 2048 tall.

1

2 public class Lesson_15 {

3

4e public static void main(String[] args) {
= / Auto-generated method stub

b

7 // Define path String to image

8 String pathBob = "bob_larryVZ.jpg";

9 String pathRose = “rose.jpg";

18

11 Picture bob = new Picture(pathBob);
12 Picture rose = new Picture(pathRose);
13

14 // Make a Canvas

15 Picture canvas = new Picture(2048, 2048):
16
17 }

18

19

20

95

Define the placePicture() function in ImageWorker

5. Go to the ImageWorker class.

6. Scroll down and write a function stub for public static Picture placePicture().
7. Use a return null as the placeholder.

8. We will start the implementation on next page

// Place Picture Function
public static void placePicture(Picture p, Picture canvas, int x, int y) {

Parameters:

Picture p: Picture to place

Picture canvas: Destination for p

int x: X position for starting point (Upper Left corner)

int y: Y position for starting point (Upper Left corner)

96

Setup the Nested For Loop

9. Setup the nested for loops to copy the pictures from p to canvas. Notice we will use
‘r’ for vertical (Y) positions and ‘c’ for horizontal (X) positions.

// Place Picture Function
public static void placePicture(Picture p, Picture canvas, int x, int y) {

// Nested For Loop
for (int r = @; r < p.height(); r++) {
for (int c = @; c < p.width(); c++) {

Compute destination (x, y) and copy Pixel Colors
10. Inside the nested for loop, compute dX and dY using the x and y parameters.
11. Get the Color at (c, r) from p. Name this color “pS”

12. Set the color of canvas at (dX, dY) to the Color from p at (c, r) we named “pS”

// Place Picture Function
public static void placePicture(Picture p, Picture canvas, int x, int y) {

// Nested For Loop
for (int r = @; r < p.height(); r++) {
for (int ¢ = 8; ¢ < p.width(); c++) {

// Set destination values for canvas
int dX = ¢ + x;
int dY = r + y;

// Get original coler from input Picture p
Color pS = p.get(c, r);

// Set the canvas destination pixel to pS color
canvas.set{dX, dY, pS);

97

Experiment with placing Picture objects, using effects functions, and resizing
existing pictures in Lesson_15 class

13. Go back to Lesson_15 and find the main() function. Create some new images using
the functions you wrote.

14. | am going to experiment with the setAllRed(), setAllBlue(), setAllGreen() from
ImageWorker

15. Use the ImageWorker.placePicture() to put these on the canvas.

16. Use canvas.show() to test.

public class Lessonl5 {

public static void main(String[] args) {
// Auto-generated method stub

// Get a Picture from file
String pathBob = "bob_larryV2.jpeg";
Picture bob = new Picture(pathBob);

// Make a Canvas
Picture canvas = new Picture(2048, 2048);

// Edit Pictures
Picture redBob = ImageWorker.setAllGreen(bob, @);
redBob = ImageWorker.setAllBlue(redBob, @);

Picture greenBob = ImageWorker.setAllRed(bob, @);
greenBob = ImageWorker.setAllBlue(greenBob, @);

Picture blueBob = ImageWorker.setAllGreen(bob, @);
blueBob = ImageWorker.setAllRed(blueBob, @);

// Place on Canvas

ImageWorker.placePicture(bob, canvas, @, 9);
ImageWorker.placePicture(redBob, canvas, 512, @);
ImageWorker.placePicture(greenBob, canvas, 1024, 8);
ImageWorker.placePicture(blueBob, canvas, 1536, 0);

// Show Canvas
canvas.show();

98

Write Picture to File:
1. Experiment with editing / writing code to manipulate your images.
2. Write these images to the canvas.

3. Save the canvas to the File system as “canvas.jpg”.

99

16 Final Project: Create a Picture Collage with Java

Objectives: Create a collage using a collection of images and
applying / creating effects with Java.

Skills Needed:
Create image editing functions
Importing Images as Picture Objects
Editing Images with Java functions
Creating Canvas and arranging Images
Saving to File System

Project - Apply what you have learned and create a product

16 Final Project: Project Setup and Planning

1. Create a new class called “Final_Project” in “Image Project 01"

2. Collect source images and place them in the “Image Project 01" project on
Eclipse.

3. Develop a written plan or sketch of what you want to do with the images.

4. Plan out any new editing functions (turning images, adding borders, picture in
picture . . .)

5. Create a Picture object canvas in “Final_Project” to place edited pictures on.
6. Implement any additional functions in ImageWorker
7. Create Code on “Final_Project”

8. Test and Refine

100

ldeas . . . Try these in your project

1. Research the functions to change the size of a picture:

2. Write functions to turn pictures 90 degrees right or left.
3. Research photo filters and try to apply with Java

4. Experiment with Image “Averaging” to simulate Opacity

Requirements

1. Use at least 4 different source images in artwork.

2. Use at least 4 image manipulation functions from ImageWorker
(these are functions you defined in lessons)

3. Create and use at least one new manipulation function in
ImageWorker (see previous slide for suggestions)

4. Use one of the scaling functions to change the size of images.
5. Collage canvas must be at least 1000 by 800 pixels.

6. Collage canvas must have at least 10 different images (can be
repeats with various edits using functions)

101

Deliverables (To Google Classroom or your Website)

1. Source Code for your ImageWorker.java

2. Source Code for your Final_Project.java
Put your name in comments on the first line
Il Firsthame Lastname

3. Your Collage in .jpg format.

4. A Google Slide with the following:
% of the Slide will be your Collage
¥4 of the Slide will be a short paragraph describing the design
Slide will be formatted and attractive

Collage Title by Firstname Lastname

Short paragraph on how you
made the collage goes here.
Describe your design process,
function calls, and patterns you
used to create the artwork.

If you created some of your
own picture functions, describe
them here and what they do.

102

Project O1: Duotone Filter (by Kevin Wayne)

A duotone filter involves using two colors to create a new image. In particular, a duotone
filter is a way to reproduce an image, using combinations of only two ink colors, colorl

and color?2.

It is a popular effect for photographers and digital artists. (Here's a nice site for
experimentation.)

To apply a duotone filter to an image, consider each pixel of a source image one at a
time:

e Let(r, g b) denote the red, green, and blue components, respectively of the pixel.
Each component is an integer between 0 and 255.

e Let(r, g, b)) and (v, g, b,) denote the red, green, and blue components of
colorl and color2 respectively.

e Change the color of the pixel from (7, g, b) to (r’, g’, b’) by applying the following
formulas:

o First, compute the monochrome luminance of the given color as an
intensity between 0.0 and 255 using the NTSC formula:

m [uminance = (0.299r+ 0.587g + 0.114b) / 255.0
o Then,computer’, g’, b’ using the formulas:
m 7’ = luminance *r; + (1 - luminance) * r,
m g’ = luminance * g, + (1 - luminance) * g,
m b’ = luminance * b, + (1 - luminance) * b,
m When computing 7’, g’, b’ round the result to the nearest integer to
sothatr’, g’, b’ are integers between 0 and 255.

Hint for rounding:

double red = 1.75;

int redRounded = (int) Math.round(red);

103

https://medialoot.com/duotones

Requirements:

Write a program Duotone. java that applies a duotone filter to an image, and displays
the results in a window. You may use StdPicture or Picture to read, modify, and
display the picture. More information on StdPicture and example can be found below:

public class StdPicture
void read(String filename) initialize picture from file ilename
int width() return the width of the picture
int height() return the height of the picture
int getRed(int col, int row) return the red component of pixel (col, row)
int getGreen(int col, int row) return the green component of pixel (col, row)
int getBlue(int col, int row) return the blue component of pixel (col, row)
void setRGB(int col, int row, set the color of pixel (col, row) to (r, g, b)
int r, int g, int b)
void show() display the picture in a window
void save(String filename) save the picture to file filename
API for our library of static methods for standard picture

Example:

public class DuoTone {
public static void main(String[] args) {

// Define path String and Open Picture
String path = "bob_larryV2.jpg";
StdPicture.read(path);

// Read colors at pixel (10, 10)

int red = StdPicture.getRed(10, 10);

int green = StdPicture.getGreen(10, 10);
int blue = StdPicture.getBlue(10, 10);

// Show Picture on Screen
StdPicture.show();

104

For example, given a photo of Johnson Arch:

Duotone Image:

In this sample execution,
colorl is Princeton orange (245, 128, 37) and
color?2 is black (0, 0, 0).

105

Take a photo of a building, statue, gate, or other structure on campus and select two
different colors for (r,, g;, b;) and (r,, g,, b,). Apply the duotone filter to that image.

Deliverables:

1. Create a Google Doc named “Lastname Duotone Project”. Set the font to Times New
Roman 12.

2. Place a header on the document in the following format:

Firstname Lastname
Class Name

Period, Term, Year
Project Name

3. In the body of the document, place the following:

Screenshot of the original image you selected to apply the Duotone program.
Screenshot of the resulting Duotone image from your Code

e Screenshot of the color patch for your color1 including the red, green, and blue
values.

e Screenshot of the color patch for your color2 including the red, green, and blue
values.

e (You can use any HTML Color Picker to create the color patch)
A short paragraph outlining your process for creating the DuoTone Code.

4. Create a Table in the document and paste your code from DuoTone.java in the table.
Make sure the code is in consolas font.

5. Submit the Google Doc “Lastname Duotone Project” to the Google Classroom.

106

Project 02: Rectangular tile of an image (by Kevin Wayne)

Write a program to create a rectangular tile of an image. A rectangular tile of an image is
created by repeating copies of an image in a rectangular grid, with a specified number
of columns and rows. For example, consider the following image:

Here is a 6-by-3 rectangular tile:

107

Requirements:

1. Write a program Tile. java that takes three command-line arguments (the file name
of the image, the number of columns, and the number of rows) and displays a
rectangular tile of the image, as described above. Using the Picture API| data type,
organize your program using the following API:

public class Tile {

public static Picture tile(Picture picture, int cols, int rows) {
// Complete Code Here

¥

public static void main(String[] args) {
// Define Picture Object, number of rows, number of columns
String path = “tile.png”;
int width = 6;
int height = 3;

// Call the tile method and show the resulting image

2. Run the program with three different input tile images with different width and height
values. You may use the tile images provided on the Google Classroom in the .zip file or
you may create your own tiles. (Create images less than 128 by 128 pixels).

108

https://introcs.cs.princeton.edu/java/11cheatsheet/#Picture

Example Program Executions:

princeton.png with width of 1 and height of 1

princeton.png with width of 5 and height of 2

bricks.png with width of 1 and height of 1

109

Deliverables:

1. Create a Google Doc named “Lastname Tile Project”. Set the font to Times New Roman
12.

2. Place a header on the document in the following format:

Firstname Lastname
Class Name

Period, Term, Year
Project Name

3. In the body of the document, place the following:

e Screenshot of the original tile images (at least 3 different images)
e Screenshot of the resulting tile images (at least 3 examples)
e Label each image set with the width and height.

e A short paragraph outlining your process for creating the Tile Code.

4. Create a Table in the document and paste your code from Tile.java in the table. Make
sure the code is in consolas font.

5. Submit the Google Doc “Lastname Tile Project” to the Google Classroom.

110

	Project 01: Duotone Filter (by Kevin Wayne)
	Project 02: Rectangular tile of an image (by Kevin Wayne)

