, Metric System, & Unit Conversion Review differentiated Worksheet

<u>Learning objective</u>: I can use the mathematical skills to analyze and find the physical quantities.

Success Criteria: :

Apply the scientific notation Calculate the powers addition, multiplication, subtraction, and division.

Find the metric prefix for the needed values Determine the significant figures

Low Achievers, Moderate achievers, High achievers

Scientific Notation

- 1. Rewrite the following numbers in **scientific notation**, in simplest form. Include units. Use appropriate significant figures!
- a. Altitude of summit of Mt. Ka'ala (highest point on O'ahu): 4020 ft =
- b. Altitude of summit of Mauna Kea: 13,796 ft =
- c. Thickness of a human hair: 0.015 cm =
- d. Wavelength of reddish light: 0.0000007 m =
- e. Height of your instructor: 1.80 m =
- f. Number of galaxies in the universe: 1 trillion galaxies =
- g. Age of the universe in seconds: 430,000,000,000,000,000 s =
- 2. **Calculate** the following, and write your answer to each in **scientific notation**. Try to do (a)–(i) first *without* the aid of your calculator, then check your answers by redoing them *with* your calculator. Assume that parts (a)–(h) contain *exact* numbers with infinite precision; for parts (i)–(n), express only the appropriate number of *significant figures* in your final answer. [Note that (b), (c), (g), (l), and (m) contain *division* signs, not plus signs.]

```
a. 10^{10} \times 10^4 =
```

b.
$$10^{10} \div 10^4 =$$

$$\mathbf{c}$$
, $10^{10} \div 10^{-4} =$

d.
$$10^{10} + 10^4 =$$

e.
$$10^{10} - 10^4 =$$

f.
$$(2 \times 10^5) \times (3 \times 10^{12}) =$$

$$\mathbf{g} \cdot (3.5 \times 10^{17}) \div (7 \times 10^8) =$$

h.
$$10^7 - (3 \times 10^6) =$$

i.
$$(42.3 \times 10^{-5}) + (5.77 \times 10^{-4}) =$$

j.
$$(34.9 \times 10^6) \times (212 \times 10^{-15}) =$$

$$\mathbf{k.} (0.88 \times 10^{-3}) \times (6.3 \times 10^{-10}) =$$

1.
$$(9.876 \times 10^{35}) \div (5.4321 \times 10^{-13}) =$$

m. mass of Earth ÷ mass of Moon =
$$(5.974 \times 10^{27} \text{ g}) \div (7.348 \times 10^{25} \text{ g}) =$$

n. mass of Earth – mass of Moon =
$$(5.974 \times 10^{27} \text{ g}) - (7.348 \times 10^{25} \text{ g}) =$$

Powers of Ten

3. Insert the correct **metric prefix** abbreviations (be careful to distinguish upper case from lower case!):

$10^{-2} \text{ m} = 1$	↑m	$10^9 \text{ y} = 1$	у	$10^3 \mathrm{W} = 1$	W
$10^{-3} \text{ m} = 1$	m	$10^6 \text{ W} = 1$	W	$10^{-6} \text{ s} = 1$	S
$10^{-9} \text{ m} = 1$	m	$10^3 g = 1$	g	$10^9 \text{ bytes} = 1$	В
$10^6 \text{Hz} = 1$	Hz	$10^{-12} \text{ s} = 1$	S	$10^{12} \text{ bytes} = 1$	В

(units: m = meter; g = gram; s = second; Hz = hertz, a unit of frequency; y = year; W = watt, a unit of power; B = byte, a unit of computer information)

4. Match each of the following **length units** to the distance that it is best or most frequently used to describe:

A. Size of an ant	0.1 nm = 1 Å
B. Size of a person	100 nm = 1000 Å
C. Distances between neighboring stars	100 μm
D. Diameter of human hair	1 mm
E. Size of an atom	100 cm = 1 m
F. Size of viruses and small bacteria	1 km
G. Distances within our Solar System	10 ⁸ km
H. Distances around Oahu	10^{13} km

Significant Figures

5. How many **significant figures** are represented in each of the following numbers?

a. 579.420b. 3.14159265c. 2×10^{11} d. 50.e. 3800f. 5.60×10^{48} g. 243.h. 9.0000×10^{-9} i. 0.00000030j. 8

Scientific Hypotheses

- 9. Is each of the following statements a **testable scientific hypothesis**, or **not**?
- a. Light travels slower in glass than in air.
- b. Love is more important than knowledge.
- c. All objects fall 4.9 meters during the first second after release in a vacuum.
- d. The universe is filled with tiny particles called hypotons, which have no mass, no charge, and no known form of interaction with ordinary matter.
- e. Vanilla tastes better than chocolate.
- f. The majority of Americans prefer vanilla to chocolate.
- g. All human actions and choices are predestined.
- 10. Imagine that you are living long ago, and you are having a discussion about the shape of the world with your colleagues. Devise a **simple test or experiment** that you could perform to test (either support or disprove) one of the following hypotheses:
- a₁. The surface of the Earth is an infinite flat plane, or
- **a₂.** The surface of the Earth is (nearly) spherical.

For a bigger challenge: similarly devise a test for each of the following two scientific hypotheses. (*Thought question:* How do we even know *today*, with modern technology, that they are true?)

- **b.** The Earth spins.
- c. The Earth orbits the Sun, and not the other way around.

Scientific Notation, Metric System, & Unit Conversion Review Worksheet SOLUTIONS

- 1. **a.** 4.02×10^3 ft (or 4.020; it is unclear whether the final zero is significant) **b.** 1.3796×10^4 ft **c.** 1.5×10^{-2} cm **d.** 7×10^{-7} m e. 1.80 m (this is the same as writing 1.80×10^{0} m) f. 1×10^{12} galaxies (or simply: 10^{12} galaxies) g. 4.3×10^{17} s (or 4.30, or 4.300, etc., although there are probably only 2 sig. figs) **h.** $6.21 \times 10^{-25} \text{ cm}^3$ 2. Assume the values in parts (a)–(h) are exact numbers with infinite precision: **a.** $10^{10} \times 10^4 = 10^{(10+4)} = 10^{14}$ **b.** $10^{10} \div 10^4 = 10^{(10-4)} = 10^6$ **c.** $10^{10} \div 10^{-4} = 10^{(10 - -4)} = 10^{14}$ **d.** $10^{10} + 10^4 = 1.000001 \times 10^{10}$ **e.** $10^{10} - 10^4 = 9.99999 \times 10^9$ **f.** $(2 \times 10^5) \times (3 \times 10^{12}) = (2 \times 3) \times (10^5 \times 10^{12}) = 6 \times 10^{(5+12)} = 6 \times 10^{17}$ g. $(3.5 \times 10^{17}) \div (7 \times 10^8) = (3.5 \div 7) \times (10^{17} \div 10^8) = 0.5 \times 10^{(17 - 8)} = 0.5 \times 10^9 = 5 \times 10^8$ **h.** $10^7 - (3 \times 10^6) = (10 \times 10^6) - (3 \times 10^6) = (10 - 3) \times 10^6 = 7 \times 10^6$ For parts (i)–(n), observe *significant figures*: i. $(42.3 \times 10^{-5}) + (5.77 \times 10^{-4}) = 1.000 \times 10^{-3}$ **j.** $(34.9 \times 10^6) \times (212 \times 10^{-15}) = 7.40 \times 10^{-6}$ **k.** $(0.88 \times 10^{-3}) \times (6.3 \times 10^{-10}) = 5.5 \times 10^{-13}$ **1.** $(9.876 \times 10^{35}) \div (5.4321 \times 10^{-13}) = 1.818 \times 10^{48}$ **m.** $(5.974 \times 10^{27} \text{ g}) \div (7.348 \times 10^{25} \text{ g}) = \text{ratio of mass of Earth to mass of Moon} = 81.30 (or: 8.130 \times 10^{1})$ **n.** $(5.974 \times 10^{27} \text{ g}) - (7.348 \times 10^{25} \text{ g}) = \text{difference of mass of Earth and mass of Moon} = 5.901 \times 10^{27} \text{ g}$ 10^{-2} m = 1 cm (centimeter) 3. $10^9 \text{ y} = 1 \text{ Gy (gigayear)}$ $10^3 \text{ W} = 1 \text{ kW (kilowatt)}$ $10^{-3} \text{ m} = 1 \text{ mm (millimeter)}$ $10^6 \text{ W} = 1 \text{ MW (megawatt)}$ 10^{-6} s = 1 µs (microsecond) $10^3 g = 1 kg (kilogram)$ $10^{-9} \text{ m} = 1 \text{ nm (nanometer)}$ 10^9 bytes = 1 GB (gigabyte) 10^{-12} s = 1 ps (picosecond) $10^6 \text{ Hz} = 1 \text{ MHz (megahertz)}$ 10^{12} bytes = 1 TB (terabyte) $\underline{\mathbf{E}}$ 0.1 nm = 1 Å 4. A. Size of an ant \underline{F} 100 nm = 1000 Å B. Size of a person C. Distances between neighboring stars <u>D</u> 100 μm <u>A</u>__ 1 mm D. Diameter of human hair B = 100 cm = 1 mE. Size of an atom F. Size of viruses and small bacteria H 1 km $G = 10^8 \text{ km}$ G. Distances within our Solar System 10¹³ km H. Distances around Oahu
- **5. a.** 6 **b.** 9 **c.** 1 **d.** 2 **e.** 2 (or 3 or 4... it's ambiguous!) **f.** 3 **g.** 3 **h.** 5 **i.** 2 **j.** 1
- 9. **a.** Yes. One could devise an experiment to test the relative speed of light in various media.
- b. No. This is a subjective statement.
- c. Yes. This is a statement that can be tested and, if contradicted by measurements, falsified.
- d. No, unless there is *some* way that the hypotons' existence can be detected.
- e. No. This is a subjective statement.
- f. Yes. A survey can be performed to support or disprove the statement (to within a desired level of certainty).
- g. No. There is no possible test that could be performed that might disprove the statement.
- 10. **a.** If the Earth is spherical, then ships should disappear over the horizon bottom-first and mast-last. Aristotle also deduced that the Earth must be spherical since lunar eclipses always show the shadow of the Earth as a circle, no matter the direction in which the eclipse happens.
- b. If the Earth were not spinning, we would need a new explanation for the Coriolis effect and Foucault's pendulum.
- c. If the Earth were not orbiting the Sun, we would need a new explanation for the annual cycle of parallax motion of the

nearest stars.