Open the PhET simulation <u>Nuclear Fission</u>, this is an embedded JAVA simulation, it may take some time to open.

<u>Background:</u> In this simulation, you will be using two isotopes of uranium. Complete the following information about uranium-235 and uranium-238.

Isotope	# protons	# neutrons	atomic mass
uranium-235			
uranium-238			

1.	Describe how you can trigger a fission reaction in the uranium-235 atom.
2.	How many neutrons are released when the atom undergoes fission?
3.	Briefly describe the process by which Uranium-235 can be made unstable. Write a nuclear equation for the process.

Using the Chain Reaction Tab. . .

- 1. What happens when you shoot a neutron at a uranium-238 atom?
- 2. What happens when you shoot a neutron at a uranium-239 atom?
- 3. Suppose that you have 100 atoms of Uranium-235 and you fire a neutron into a single atom. Sketch a qualitative graph of Fissioned U-235 Atoms vs. Time.

5.	-	ain how the rvations.	PhET model	validates/invalidates your prediction made in question 7, citing specific
6.	Desc		appens in ea	ercentage of U-235 atoms affects the percentage of U-235 nuclei fissioned. ach of the following situations when you shoot ONE neutron into the field of
		_		to the following spreadsheet: <u>Critical Mass Determination</u> neutron, make sure it hits a U-235 atom.
Atom	าร		% U-235 (#U-235 / Total)	
U-23	35	U-238	% U-235	
100)	0	100	
90		10	90	
80		20	80	
70		30	70	
60		40	60	
50		50	50	
40		60	40	
30		70	30	
20		80	20	
10		90	10	
0		100	0	
7.	Acco	rding to the	data, deterr	mine the criteria and settings needed to create an atomic bomb.

4. Using the "Chain Reaction" tab within the model, **validate** your prediction from question 7.

8.	Explain why "weapons-grade" Uranium would not likely contain very much Uranium-238.