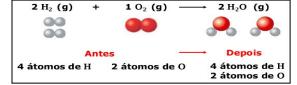


SECRETARIA DE ESTADO DE EDUCAÇÃO E.E. PROF. SILVIO OLIVEIRA DOS SANTOS

Aula Não Presencial - química				
ALUNO (A):		N°	3º ano	
PROF ^a . Karine		TURNO: Noturno	Data: / 08 /202	22


Orientações para realização desta avaliação:

- 1. Cole no caderno e Faça a leitura dos conteúdos apresentados;
- 2. Tente fazer os exercícios propostos, e traga suas dúvidas para a aula presencial.

Recomposição da aprendizagem: reações (102) e calores de reações (105).

Dada a reação química:

HCℓ + NaOH \rightarrow NaCℓ + H₂O temos: substâncias reagentes \rightarrow formando substâncias produtos - em solução aquosa: as substâncias são quebradas em íons: H⁺ Cℓ⁻ e Na⁺ OH⁻

- e são formadas novas ligações entre os íons: Na⁺ Cℓ⁻ e H⁺ OH⁻ respeitando as quantidades de ligações da regra do octeto (na tabela de valência ou quebra cabeça).

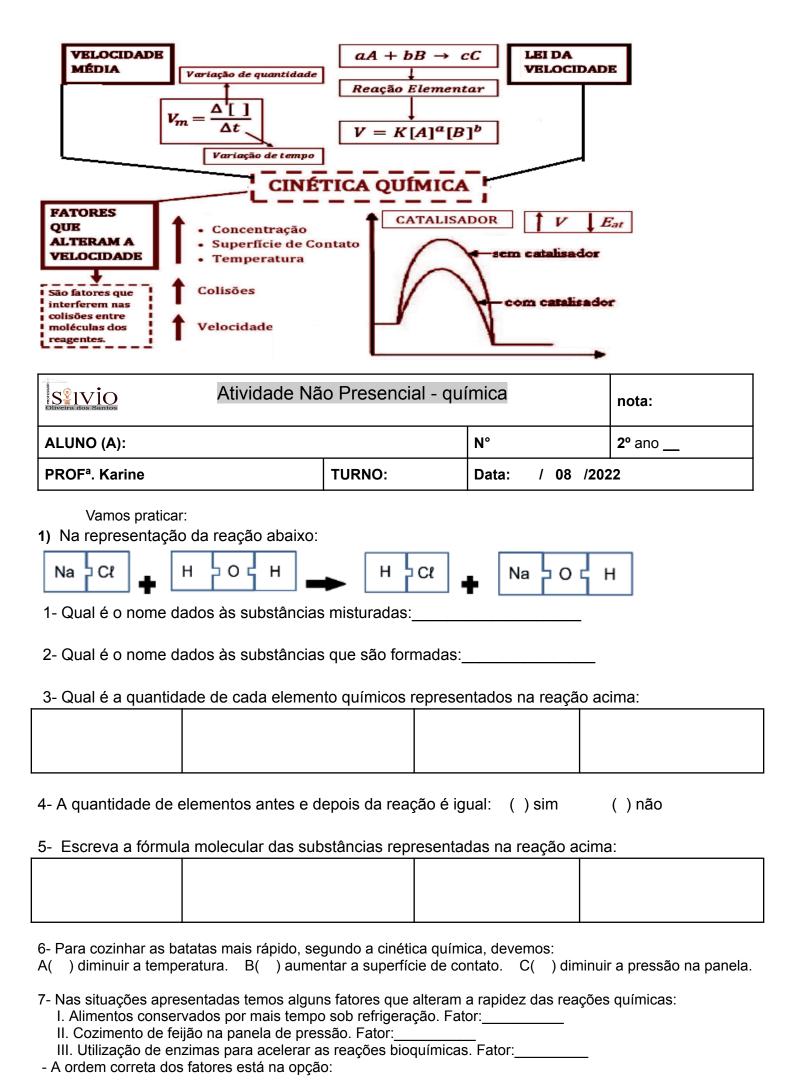

Toda a quantidade dos elementos que foram misturados nos reagente, tem que aparecer nos produtos, segundo as leis ponderais (lei de conservação das massas e das proporções constantes ou definidas)

O conceito de reações químicas podem ser aplicados quando preparamos um bolo, pois misturamos uma determinada quantidade de ingredientes para obter um produto com tudo o que foi misturado e com característica diferentes dos ingredientes que foram misturados – uma transformação química.

Na representação:

-Coeficiente é a quantidade de moléculas 2 vezes H₂O,

-Índice e a quantidade do elemento escrito antes dele, o H, e se estiver depois de um parêntese $(OH)_2$, é a quantidade todos os elementos que estão ali dento.



As reações podem produzir um produto (**formação**) reações com compostos orgânicos (saponificação, fermentação, queijos, pães, bolos); e **decomposição, simples e dupla troca** (mistura de produtos de limpeza);

As reações liberam energia/calor de forma **exotérmica** (combustão, consumo de alimentos) e **endotérmica** (cozimento dos alimentos, movimento do corpo) **-termoquímica**- algumas reações podem produzir eletricidade -pilhas e baterias - **eletroquímica**;

As reações podem acontecer de forma rápida (uso de panela de pressão, amadurecimento de frutas) ou lenta (uso de geladeira, influencia da temperatura) - **cinética guímica**-:

- -As reações podem ter um equilíbrio, chega um momento que não acontece mais nada;
- -As reações podem acontecer no nosso corpo (metabolismo) ou nas plantas (fotossíntese);

- A() temperatura, superfície de contato e pressão.
- B() concentração, superfície de contato e catalisador.
- C() temperatura, pressão e catalisador.
- 8- Observa-se que a velocidade de reação é maior quando um comprimido efervescente, usado no combate à azia, é colocado:

 - A() inteiro, em água que está à temperatura de15°C. B() pulverizado, em água que está à temperatura de 25°C.
 -) inteiro, em água que está à temperatura de 25°C.

9- Escreva suas dúvidas:

Brasileiros criam plástico biodegradável, comestível e antimicrobiano

Destinado à embalagem de alimentos, material foi produzido por pesquisadores da Unesp a partir de gelatina, argila e nanoemulsão de óleo essencial de pimenta preta.

O descarte de embalagens alimentares constitui um dos grandes problemas ambientais da atualidade. Em todo o planeta, são produzidos anualmente mais de 350 milhões de toneladas de plásticos e estima-se que 85% do lixo presente nos oceanos seja constituído por esse material. O Brasil ocupa o quarto lugar no ranking mundial, com a produção de aproximadamente 11 milhões de toneladas por ano. O agravante é que a maioria das embalagens plásticas é fabricada a partir de fontes não renováveis, como o petróleo. Por isso, existe hoje um grande esforço de pesquisa para diminuir o uso dos recursos fósseis na produção de plásticos e para desenvolver materiais para embalagem biodegradáveis que, ao mesmo tempo, evitem a contaminação por microrganismos e prolonguem a vida útil dos alimentos, reduzindo as perdas. Estudo realizado pelo Grupo de Compósitos e Nanocompósitos Híbridos (GCNH) do Departamento de Física e Química da Universidade Estadual Paulista (Unesp), em Ilha Solteira, trouxe contribuição importante nesse sentido. O trabalho teve apoio da Fapesp e os resultados foram divulgados na revista Polymers. Para fabricar seu "bioplástico" – ou "plástico verde", como também é chamado –, o grupo utilizou como matéria-prima principal a gelatina incolor de tipo B, extraída do tutano de boi e facilmente encontrável em supermercados e outros estabelecimentos comerciais. "A gelatina foi um dos primeiros materiais usados na produção de biopolímeros e continua sendo muito empregada devido à sua abundância, baixo custo e excelentes propriedades para a formação de filmes", diz a química Márcia Regina de Moura Aouada, professora da Faculdade de Engenharia de Ilha Solteira (Feis-Unesp) e coordenadora do estudo. "No entanto, embalagens à base de biopolímeros exibem, de modo geral, características que precisam ser melhoradas para se tornarem equiparáveis às obtidas a partir do petróleo. Isso se refere especialmente às propriedades mecânicas e de barreira a vapores. Por esse motivo, adicionamos à gelatina a argila cloisita Na+", conta a pesquisadora. Com a adição da argila, foi obtido um filme mais homogêneo, capaz de suportar, na média, trações da ordem de 70 megapascals (70 MPa). Nos plásticos convencionais, à base de polietileno, a resistência à tração costuma variar entre 20 MPa e 30 MPa - menos da metade da alcançada com o bioplástico. "Além da argila, acrescentamos também à mistura uma nanoemulsão de óleo essencial de pimenta-preta. O objetivo, no caso, foi conseguir uma embalagem comestível mais atraente em termos de sabor e odor. E que, além disso, pudesse estender a vida útil do alimento embalado por meio da adição de componentes antimicrobianos e antioxidantes à matriz polimérica", afirma. Vale ressaltar que o bioplástico em pauta foi projetado para embalar carne bovina na forma de hambúrgueres - um alimento bastante suscetível à contaminação microbiana e que apresenta odor muito pronunciado. Mas o princípio geral de adicionar argila e nanoemulsões de óleos essenciais à matriz de gelatina pode e deverá ser estendido a outros tipos de alimentos - variando-se, caso a caso, o tipo de óleo essencial e a proporção empregada. "A inclusão desse tipo de embalagem no mercado poderá proporcionar um decréscimo significativo na utilização de embalagens à base de polímeros não biodegradáveis, evitando, assim, o acúmulo de resíduos sólidos. Além disso, o bioplástico deverá aumentar a segurança dos alimentos embalados em relação à contaminação por patógenos e contribuir para a diminuição de perdas", comenta a pesquisadora. Além do bioplástico mencionado, o grupo produz curativos a partir de celulose bacteriana. E embalagens comestíveis contendo nanoestruturas derivadas de purê de couve, purê de cacau, purê de cupuaçu extrato de camu-camu e nanoemulsões, com potencial de aplicação nas indústrias de alimentos fármacos e cosméticos.

Disponível em: www.mdpi.com/2073-4360/13/24/4298.

RESPONDA

- 1- Na sua opinião, como é o cenário atual de fabricação, uso e descarte de embalagens plástic no Brasil?
- 2- Segundo os autores, como foi construído o bioplástico citado?
- 3- Quais as características que precisam ser melhoradas?
- 4- Segundo os autores, o que a inclusão deste material no mercado proporcionará?
- 5- Pensando nos princípios de química verde e sustentabilidade, sugira um novo prod ambientalmente correto e discuta quais as importâncias deste para o mercado.

2008	
S\langle 1V10)
Oliveira dos Santos	

SECRETARIA DE ESTADO DE EDUCAÇÃO

S VIO	E.E. PROF. SILVIO OLIVEIRA DOS SANTOS				
Aula Não Presencial - química					
ALUNO (A): N° 3° ano					
PROF ^a . Karine TURNO: Noturno Data: / 09 /2022				22	
Orientações para realização desta avaliação: 1. Cole no caderno e Faça a leitura dos conteúdos apresentados; 2. Tente fazer os exercícios propostos e traga suas dúvidas para a aula presencial					

Química verde

A química verde é uma linha de pensamento que tem se difundido cada vez mais a fim de tornar a química aliada ao meio ambiente. Ela se baseia em 12 passos que visam à melhora dos processos químicos realizados por indústrias. Os 12 passos são:

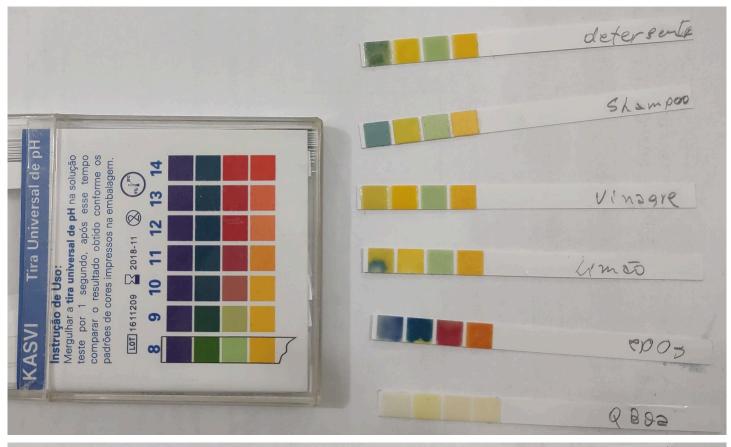
- 1. Prevenção: Evitar ao máximo pelo estudo das rotas de produção, a formação de subprodutos nocivos;
- 2. **Eficiência**: Transformar a maior parte dos reagentes utilizados em produto final.
- 3. Síntese segura: Estudar sínteses que não formem subprodutos nocivos e que toda sua condução seja segura.
- 4. Produtos seguros: O produto final também não deve ser nocivo ao meio ambiente
- 5. Solventes seguros: Dar preferência a solventes cujo descarte possa ser feito sem impacto ambiental.
- 6. Integração de energia: Durante o processo, muita energia é gerada na forma de calor, essa energia pode ser usada dentro do próprio processo para reduzir o gasto de energia da indústria.
- 7. Fontes renováveis: As matérias primas devem ser provenientes de fontes renováveis de preferência.
- 8. **Derivados**: Evitar a formação de derivados sintéticos.
- 9. Catálise: Dar preferência ao uso de catalisadores para acelerar à reação ao invés de gastar mais material para "empurrar" a reação para os produtos
- 10.Biodegradável: Já foi falado do produto seguro ao meio ambiente, nesse caso é o produto que pode ser reciclado pela própria natureza.
- 11. Análise da poluição: Os efluentes saídos da indústria bem como o material que circula dentro da indústria deve ser continuamente analisado para detectar prontamente qualquer tipo de contaminação.
- 12. Química segura contra acidentes: Todos os passos da implementação da indústria devem ser tomados a fim de evitar acidentes de grandes proporções que provocarão contaminação e, dependendo da magnitude, até mesmo perdas humanas.

Equilíbrio químico

- ..Reacões irreversíveis são aquelas em que pelo menos um dos reagentes é completamente consumido, não permitindo que o processo se reverta. É o caso, por exemplo, da combustão, onde as cinzas, um dos produtos da reação, não voltam a ser um dos reagentes que foi queimado.
- .. Nas reações reversíveis os reagentes são transformados em produtos (reação direta) que, por sua vez, podem ser convertidos em reagentes novamente (reação inversa). As reações direta e inversa acontecem de maneira dinâmica e simultânea.
- ..O equilíbrio químico só é alcancado em reações reversíveis, e isso acontece quando a velocidade da reação direta é igual a da reação inversa.
- ..Como o pH determina se um sistema é ácido ou básico? Equilíbrio iônico É um tipo particular de equilíbrio químico em que a reação, além das moléculas, também apresenta íons. São, na verdade, reações envolvendo soluções aguosas com ácidos fracos e bases fracas. Assim como aqueles fatores externos que já estudamos (concentração, temperatura e pressão) interferem no equilíbrio químico, também as concentrações dos íons H+ e OH- interferem nos sistemas iônicos. Um jeito seguro de identificar substâncias ácidas e básicas é medindo o seu pH, com soluções indicadores, papel indicador, ou aparelhos. Ionização dos ácidos - pH Os ácidos em soluções se ionizam produzindo o cátion hidrogênio (H+) e um ânion. E é exatamente pela concentração deste cátion (H+), conhecida como concentração hidrogeniônica, que se consegue determinar a acidez ou a basicidade de uma solução.

Observe esses dois exemplos:

a. ionização do ácido clorídrico


b. ionização do ácido acético

$$\rightarrow \mathsf{HC}\ell_{(\mathsf{aq})} \Longleftrightarrow \mathsf{H^+}_{(\mathsf{aq})} + \mathsf{C}\ell^-_{(\mathsf{aq})}$$

$$\rightarrow \mathsf{CH_3COOH}_{(\mathsf{aq})} \Longleftrightarrow \mathsf{H^+}_{(\mathsf{aq})} + \mathsf{CH_3COO^-}_{(\mathsf{aq})}$$

Indicadores são substâncias utilizadas na química para saber se uma solução apresenta um pH ácido (menos que 7), básico (maior do que 7) ou neutro (7). Pela mudança de cor.

Indicador	Cor na solução		
	Meio ácido (pH < 7)	Meio básico (pH > 7)	
Fenolftaleína	incolor	lilás	
Alaranjado de metila	vermelho	amarelo	
Azul de bromotimol	amarelo	azul	

Outubro:

Produtos químicos:

Tudo o que existe é composto de matéria ou material. Esse material por sua vez é composto de substâncias químicas/elementos químicos.

As substâncias químicas podem ser fabricadas ou obtidas do meio ambiente como rochas, madeira, plantas, frutas, vegetais e animais.

Classificação de produtos químicos:

As substâncias podem ser classificadas em orgânicas e inorgânicas. Originalmente proposto como substâncias orgânicas obtidas de organismos vivos e as substâncias inorgânicas obtidas de fontes não vivas, mas hoje sabemos que ambas podem ser obtidas e fabricadas em laboratórios/indústrias.

Produção/obtenção química inorgânica e orgânica

Por meio de reações químicas podemos fabricar substâncias orgânicas e inorgânicas. Revisão: Uma reação química é composta por reagentes e produtos:

Dada a reação química:

 $HC\ell + NaOH \rightarrow NaC\ell + H2O$ temos:

substâncias reagentes → formando substâncias produtos

- as substâncias são quebradas em íons: H+ Cl- e Na+ OH-
- e são formadas novas ligações entre os íons: Na+ Cl- e H+ OH- respeitando as quantidades de ligações da regra do octeto (na tabela de valência ou quebra cabeça).

Introdução À QUÍMICA ORGÂNICA

A maioria das substâncias orgânicas podem conter além do carbono, hidrogênio, nitrogênio e oxigênio.

Quantidade de ligações dos elementos químicos: C faz 4 ligações, O faz 2 ligações e N faz 3 ligações, que podem ser simples (-), duplas (=) ou triplas (Ξ), e o H faz 1 ligação e sempre simples.


Representação das Cadeias Carbônicas

Como não podemos ver as moléculas, utilizamos diferentes formas para representá-las:

Fórmulas moleculares – representação de todos os átomos e suas quantidades na molécula;

Fórmulas estruturais planas – representação dos átomos e suas ligações na molécula num plano;

As cadeias carbônicas podem ser representadas simplesmente por linhas, nas quais os átomos de carbono são as pontas e os ângulos que unem essas linhas. Como o objetivo é simplificar, não são representados os átomos de hidrogênio que completam as ligações dos átomos de carbono. Assim, uma linha ou segmento de reta representa a ligação entre dois átomos de carbono, cujos símbolos são omitidos.

Classificação dos carbonos nas Cadeias Carbônicas

Carbono primário	1 carbono ligado à 1 outro carbono	1€ <u>G</u> ³

Carbono secundário	1 carbono ligado à 2 outros carbonos	н³с ООС СН³
Carbono terciário	1 carbono ligado à 3 outros carbonos	н₃с СН₃
Carbono quaternário	1 carbono ligado à 4 outros carbonos	сн ₃ н ₃ с сн ₃

Classificação da cadeia carbônica

Muitas vezes, é necessário também nos reportarmos a alguns outros tipos de estruturas, como às cadeias e

aos grupos ligados à cadeia carbônica principal.

aos grupos ligados à cadeia carbônica principal.					
cadeia normal	é uma sequência contínua de átomos de carbono. Nela, só apresentam carbonos secundários e dois carbonos primários, nas extremidades.	H ₃ C CH ₃			
cadeia ramificada	é uma sequência contínua de átomos de carbono. Nela, só apresentam carbonos terciários e carbonos quaternários na cadeia principal ligada outras sequências de átomos.	H_3C CH_3			
cadeia aberta	é uma sequência contínua de átomos de carbono. Sem ramificações.	H ₃ C CH ₃			
cadeia fechada ou cíclica	cadeias nas quais os átomos se unem formando anéis. Nessas cadeias, não temos a presença de carbonos primários.				
Cadeia mista	essas cadeias podem estar ligadas a outras cadeias, abertas ou fechadas. Em moléculas orgânicas mais complexas é difícil estabelecer se a cadeia principal é a aberta ou a fechada.	H ₃ C CH ₃			
Cadeia insaturada	Cadeias que possuem ligações duplas ou triplas entre os carbonos.	H ₂ C CH ₂			
Cadeia aromática	Cadeias de 6 átomos de carbonos ligados, com a ocorrência de ressonâncias (troca de lugar das ligações duplas alternadas).				

Cadeia saturada	Cadeia com átomos de carbonos primários e secundários, sem ramificações.	H ₂ C CH ₂
-----------------	--	----------------------------------

Atividade Atividade	Atividade Não Presencial - química		
ALUNO (A):		N°	3º ano
PROF ^a . Karine	TURNO:	Data: / 10 /2022	