

Basic Computing Actions

Assignments and Naming

Basic Control Flow

Assignments - Examples in Python

Assignments - Examples in R

Basic Types & Operations - Python

Introduction to Functions

Calling Built-in Functions

Calling Functions in Python

Calling Functions in R

Defining your own functions - Python

Defining your own functions - R

Memory Models for Sequences

Memory Models for Dataframes

Working with Dataframes

Conditional selection of rows from dataframe

Basic Computing Actions
You are most likely watching this video because you are in a class
where your professor is expecting you to use computing for some of the
course activities. In today's educational environment, it is possible
that you may work in several different programming languages as you go
through your studies. For example, in an economics course, you might
use the R language. But in a subsequent sociology course, you might
use Python. In physics you might use MATLAB or use JavaScript. You
might even find yourself programming in multiple languages during the
same semester. You will have a much easier time shifting across these
different languages and course requirements if you have some
understanding of the basic concepts of computing, of the basic actions
a computer can carry out. The goal of the video series you will be
watching is to explain basic computing concepts and actions, and
supplement the computational work your professor is asking you to do
in your course. There are a number of benefits of understanding

computing concepts. It will become easier for you to learn new
languages in the future. It will be easier for you to switch between
programming languages. It will be easier for you to follow example
code and adapt it to solve new problems. It will help you understand
problems, solutions that are provided to you, because you will have
better ability to step through those solutions on your own. It will
help you develop problem solutions of your own. And it will help you
figure out why code isn't working because we all sometimes write code
that does not do what we want or what we expect it to do. What are
these basic actions? They are relatively straightforward and we see
examples of them even in day to day life. First, there are sequential
operations that are executed in order. For example, think about the
basic process for writing a paper for a course. Minimally we hope you
go through these steps. You decide on the paper topic. You locate
related resource materials. You read the materials and take notes.
You make an outline for the paper. You write the paper, you edit the
paper, and you turn in the paper. The next basic operation is
decisions that determine whether a particular set of operations will
be carried out or not. These make it possible for the computer to
choose between several operations, or between several groups of
operations. You make decisions all the time. And we can make the
computer carry out that same sort of process. So you can see here two
examples. If it is raining, then take umbrella to class. You make
that decision when you look out the window in the morning. Or another
decision, if class is at 8:30, then get to breakfast by 7:45.
Otherwise, meaning your class isn't at 8:30 and probably is later,
then you want to get to breakfast by 9:00. The next basic operation
or action is iteration, which refers to repeating a series of
operations. Repetition can be based on a fixed count or based on some
condition being true. For example, when spreading frosting on a cake,
you basically carry out a repetitive process. While cake not fully
frosted, so you look at the cake, you see if there's any spots that
don't have frosting yet, if the cake's not fully frosted, you will get
more frosting on your spatula and spread it on an uncovered section of
the cake. And so you can imagine, if you put just a little bit on the
cake each time, this process will repeat a pretty large number of
times. If you put more frosting on each time you spread some, it
won't repeat as many times. But the number of times you would go
through this process is not predetermined. It is determined by how
long it takes to get the cake fully frosted. The next basic concept
is creating and naming functions. This is when we group together and
name a series of operations so we can later on refer to the whole
group as a single step and use it in the solution to a larger problem.
For example, we could take our cake frosting iterative process, name

it simply FrostCake, and then refer to that by name every time you
want to frost a cake. All programming languages have ways of carrying
out these different problem-solving actions or techniques. Just like
natural languages that we speak, each programming language has its own
syntax or grammar, and they all have a way to say the same things.
For example, these two code blocks will do exactly the same iterative
process and generate the same output. But one is a Python version and
the other is a Java version. Once you are familiar with the basic
computing actions and you know how to carry them out in one language,
it becomes much easier to learn subsequent languages in the future.
It also becomes easier to think about problem solutions in ways that
can be expressed in computer code and executed by a computer.
Hopefully, this overview and the material in the subsequent videos
will help you with the computing work that you will be doing in your
courses.

Assignments and Naming
This is the first video and we're going to be introducing the concept
of variables and the concept of assignment. So I want to start with a
real-world problem. Let's say we have three buckets, each partially
filled with water. And we want to combine them together into fourth
bucket to see how much water there is total. It's possible to
describe the process of combining the contents of the three buckets
without actually knowing how much water is in each bucket. For
example, I can take each bucket in turn and dump the contents into the
bucket that's initially empty. So first we dumped the first bucket
into the last bucket, then we dumped the second bucket into the last
bucket. Finally, we dumped the third bucket into the last bucket.
Now this process is called an algorithm. And I didn't have to
describe any numbers or specifics. I just had to describe the process
by which we combine the contents of the buckets together. Now, to
describe the process precisely, I have to be able to specify which
bucket is which. If I want to avoid ambiguity or problems like trying
to pour from the same bucket more than once. If I'm telling another
person what to do, for example, I can point to a bucket or tap on a
bucket to indicate which one to pour next, or which one to pour into.
So for example, I can say empty this bucket, the white arrow, into
that bucket, the red arrow. And then I can repeat that and say, okay,
now empty this bucket into that bucket. Empty this bucket into that
bucket. Now, even with pointing, I still have to somehow keep track
of the three buckets in my head in order to know which bucket to pour
next. Now, to do that, I might internally use a concept like left,

middle, and right. And so now we get to the idea of a variable. A
variable is a name attached to a location in the computer's memory
that holds information. It is very much like having a bucket with a
name on it. We can refer to the value of the variable or the contents
of the bucket by using the name. So for example, if we use the names
left, middle, and right to refer to our three buckets and total as the
name of the fourth bucket, then we can describe the process of
combining the buckets as a three-step process. So first, pour the
contents of the left bucket into the total bucket. Second, pour the
contents of the middle bucket into the total bucket, and finally, pour
the contents of the right bucket into the total bucket. That's an
example of a three-step algorithm. And by using the names attached to
each bucket, we can refer unambiguously to each element of the task.
Now, when we are writing programs, the buckets represent locations in
the memory of a computer. In a computer program, a variable is a name
attached to a location in the computer's memory, and that location
holds information. It is very much like a bucket with a name on it,
and we can refer to the value of the variable by using the name of the
variable. Now variables hold data or information. For example, they
might hold values that represent numbers. And so when we visualize
the internal representation of variables in a computer, we can
visualize it like this, with the names and the associated values as
two columns in a table. Now names in programming languages are
strings of characters. Every programming language has rules for what
is a valid name. In most programming languages, a name must start
with an alphabetical character, lowercase a to z, or uppercase A to Z,
or possibly a character like an underscore. The remaining letters of
the name can generally be alphabetical characters or numbers, or an
underscore. So these are valid examples of names in most programming
languages. Left, right123, middle_bucket, Total with a capital T,
BUCKET in all caps, and _total. These on the other hand, are some
examples of invalid names. In this case, left bucket contains a space
and a programming language will actually interpret that as two
separate names. 42right starts with numbers which is generally not
allowed. Middle-bucket contains an invalid character because - is
generally used to represent subtraction. And something like #Total
also starts with an invalid character. So now let's move on to
assignment. And how do we go about the process of creating a variable
using assignment? So assignment is an operator for copying a piece of
information into a memory location attached to a variable. Assignment
is how we move information around computers. And assignment is how we
can store information in computer's active memory. So when we are
describing programming language concepts like assignment without
referring to a specific language, so in something called pseudocode,

we will always use an arrow to represent assignment. The arrow shows
the direction of information flow from the the value on the right side
into the variable defined on the left. So this assignment left <- 10
copies the value ten into the memory location associated with the name
left. The next statement assigns the value 20 to the variable with
the name middle. And the third assignment assigns the value 15 to the
variable with the name right. As we make assignments using a
programming language, the computer keeps track of the variables, their
names, and their values. If we want to represent the current state of
the computer's memory, we can use a table similar to a spreadsheet,
and we call this a symbol table. We can visualize a symbol table as
having a column for names and a column for values. After the three
assignments on the left, the symbol table should look like this with
one entry for each variable that specifies its name and its current
value. Now to complete our algorithm for combining the values in the
variables together, we can use the variable names left, middle, and
right, to refer to the values in the symbol table. And then specify
that the variable total should be assigned the sum of the values in
left, middle, and right. And given the values currently in the symbol
table, total should be assigned the value 45. So to summarize, a
variable is a name associated with a location in memory that can hold
data or information. A name is a string of characters that follow a
set of rules to find by a programming language. And finally,
assignment is the operator that associates a name with a value by
copying information into the memory location associated with the name.
So now you can continue on to the next videos, which talk a little
more about how we can use assignment and symbol tables to start to
write programs.

Basic Control Flow
We're going to pick up with variables and assignments. And assignment
is when we take a value and we associate a name to it. And this is a
very important concept in computer science because it allows us to
then manipulate those values by working with the names instead of the
values themselves. So let's start with a simple example of basic
assignment. So we have a name harry. And what we're saying is we're
going to create an association between harry and the string "under the
cabinet". And we know that harry is a name and "under the cabinet" is
a string because the string is differentiated by having quotes on
either side of it. Now, the way to think about what's happening here
or a way to think about it is that we have a table and the interpreter
is maintaining information about names and their values in a table.
So in this case, we take harry and we put it in the name column. And

we take the string "under the cabinet" and we put it in the value
column. And we can repeat with hermione and with the string "muggle
parents". And because hermione doesn't exist in the table, we add her
name to the table, and then we put the value under the value line. So
now we have two names and two values in memory. So then we add the
name ron and we assign the value "big family". So now we have three
names in the table. Now, if we decide that we want to add ginny as
another name in our memory, we want ginny to have the same value as
ron, so we can write the assignment that ginny gets assigned the value
of ron. And the question is, what is the value of ron? And the way
we figure this out is we go look at our table and ron exists as a name
in the table and it has the value "big family". And so when we're
trying to decide what is the value of the right side of the
assignment. We look up the name ron and we replace that name with the
value, which means the string "big family". And then the string "big
family" gets copied into a new entry in the symbol table called ginny.
So after these four lines of code, we see four names, harry, hermione,
ron and ginny. And we see four values. And notice there's not really
an association between ginny and ron the names. Instead, we simply
assign a ginny the same value that ron had at that line of code. Now
one important concept in reading code is that order matters. So for
example, consider if I took the assignment to ron and I put it after
the assignment to ginny. In this case, when I get to the line, ginny
gets assigned the value ron, the computer is going to look in the
symbol table for the name ron. But there is no name ron in the table
at that line of code. And so the interpreter will return undefined
name error in that case, and my code will stop executing. So it's
important that we put the definition of ron before we use it on the
right side of an assignment. And then the computer will know what the
value of on is when we try and assign its value to the variable ginny.
Forward in the story to when our four students are learning their
first spell wingardiam leviosa. And I seem to remember that harry
took a while to learn his spell. So let's say he took ten tries
before he learned the spell. Now the question is, we're using the
same name on the left side that already exist in our table. And one
way, and the question is, are we creating a new line in our table?
Well, that would actually make it very difficult for the interpreter
to know what the value of harry was. Because if there are two
instances of harry in the table, then when I use harry in a later
expression, the computer won't necessarily know which value to use.
And so that creates ambiguity and ambiguity is bad when we're writing
code. So instead, we want to update the existing value of harry. And
so we're changing the association. And when we make the assignment of
10 to the name harry, we update the value in the table. And now I

have a situation where I'm using the name harry on both sides of my
assignment because maybe I remembered. Oh, harry actually had to take
one more try before he learned the spell. So the way to think about
this as we always figure out the value of the right side before we
update the value of the name on the left side. And when we're looking
at the value on the right side, we'd look at the current value in our
table. So we go to our table and we identify the name harry, and then
we replace it with the value, the current value of harry. And then
that lets gives us an expression. and now we want to assign the value
11 to the value to the name harry. And so we update our table. And
so after executing these two lines of code, harry now has the updated
value of 11. And by following that process, it's always very clear
what that updated value is going to be. Now, hermione obviously
learns the spell very quickly. And so we update her location in the
symbol table. ron learns a little faster than harry. And so again,
we look at the current value of harry, which is 11, subtract off 2.
And then we use that updated value of nine to replace the existing
value of ron. So now finally, we have ginny who takes just one more
try than hermione. And so we replace hermione with the value 1, add
those together, and then update the value of tuning. So after all of
this code, we have new values in our symbol table. And if we want to
then compute the total number of tries for all of our students, we can
now use the values in our symbol table to discover what that's going
to be. So we replace harry with 11. hermione with one, ron with
nine, and ginny with two. And then the computer computes that sum, we
get 23. Now total is a new name. So it gets added to our symbol
table with the value 23. And what this lets us do is if we then want
to print that total out to the user, we know that it's going to print
23 because we've done this evaluating of all the values of the
variables. We've walked through the code linearly. And at the end we
can predict what the program is going to do. So the main concepts for
this video are that we have to remember that code executes in a linear
order. That assignment associates a value with a name. That when we
assign a value to a new name, this creates a new association. But
when we assign a value to an existing name, it updates the association
and replaces the old value. That the right side of an assignment is
always evaluated first using the existing information in a table. And
that the value of the right side is copied into the location
associated with the name on the left side. So if we keep these rules
in mind, we can always predict what a series of assignments is going
to do and how the computer will view memory when the code is finished
executing.

Assignments - Examples in Python
In this episode, we will introduce PythonTutor and Python interpreter.
PythonTutor is an online Python interpreter. To use PythonTutor open
the web browser and enter a URL, pythontutor.com and press enter. You
will get this introduction page for PythonTutor. Let's click the link
"Start visualizing your code now". We now get into the PythonTutor
Interpreter. Let's choose that live programming mode, which will help
us better understand naming and assignment. The window on the left is
the text editor on which we can type Python code. The window is
resizable and we can adjust the edge to the size we like. The space
on the right of the text editor will display the table that contains
the names we created and associates the values. Let's create a named
harry and assign the value "under the cabinet" to it. We can see that
the interpreter generates a table to show the name and associated
automatically. When we create another name ron and assign the value
"big family", the name and its value will be added into this table.
The left column of the table indicates a name and the right column of
the table indicates values. A name in python must be assigned a value
when it is created. Otherwise, we're going to get a name error. For
example, we create a name ginny. But this time we do not assign a
value to ginny. And you are going to notice that the interpreter that
give us an error information name error at the end. And it's going to
indicate that name ginny is not defined. So we have to assign a value
to ginny, let's assign 1 to ginny and press Enter. And you're going
to notice that there is a new entry in the table for ginny and its
associated value 1. And by the way, in Python, we can we can add
comments. And the comments is just a way to explain your code. For
example, here we explain that a name must be assigned a value when
it's created. And then we want to use that as a reminder to ourselves
in the code. And to do that, we have to use the pound sign in front
of that string so that when we ask you to code, the interpreter will
consider the string as a comment, not part of the code. And they
....... And there ...a naming rule in python is that names in python
are case-sensitive. For example, if we create another named Ginny,
and this time we are using capital G here and we assign value 10 In
this case, this Ginny will be considered as a different name for a
different, a different name. And you can notice that there's a new
entry for the Ginny with capital G in the table and the value
associated with the new Ginny is going to be 10. In addition to check
the table to figure out what's going to be the value associated with
each name, we can actually use print function in Python to check out
the value associated with the name. To use a print function, we can
simply type print with a parentheses. And inside the parentheses, we

just pass their name that we want to check this value. So in this
time, we want to check the value for the ginny with lowercase g and
press Enter. You're going to notice that there will be an output
window above the table on the right of your screen. And that's going
to give us the return value for the print function. And the return
value will be the value associated with the named ginny with lowercase
g here. We can do that for the other Ginny with capital G. And then
we can notice that the return value for the second print function is
going to be 10, which is the value associated with the second Ginny
with the uppercase G here. The valid name in Python can only contain
letters, numbers, and the underscore characters. And the first
character of a name cannot be a number. For example, we can, we can,
we can define a variable we can create a name. You need to assign a
value ron to it. We can notice that there is a new entry for ginny2
in the table. And the value associated with the ginny2 is a value
that is associated with ron. We've basically assigned ron's value to
ginny2 So ron and ginny2 have the same, have the same value. But we
cannot say 3ginny. And if you do that, you're going to notice that
the interpreter give you an error message and that you know that this
is an invalid syntax because the first character of a name cannot be a
number. So to fix it, we can easily add another character in front of
their first character here so we can use the underscore. And because
underscore is a valid character in, used in names in Python. So in
that case, you can notice that the table create a new entry for
_3ginny And value for _3ginny gonna be 10 in this case One last naming
rule for Python is that we cannot assign values to keyword. For
example, True is a keyword in Python which indicate a Boolean value.
And if we assigned a value that says 3 and you are going to notice
that the Python, the Python interpreter will complain that it cannot
assign a value to a keyword and then there will be no entry for this
assignment in the table as well. In addition to True False is another
keyword and we cannot assign a value to False neither. And you
perhaps want to know what, what are the keywords in Python that we
cannot use as names? And that is a pretty good question. A handy way
to identify whether a name is a keyword or not is to use a good Python
interpreter, like the PythonTutor here. So we can notice that all
those keyword are highlighted and so, so True, True And False here are
highlighted, Those highlighted words are mostly going to be the
keyword that are reserved by the Python already and we shouldn't
assign value to those keywords. And we cannot use those keywords as
names.

Assignments - Examples in R
Welcome to the video on R. We're looking at assignment and naming in
this video. So hopefully you've had a quick introduction to RStudio,
which is the integrated development environment I'm going to be using.
When you open up RStudio to begin with, it will show you these three
windows. I'm going to also create a new R script file. And that will
give us four windows. And just a quick review. In the upper left
corner, we're going to have our code file. So that's where we can
write and save R code. In the lower left we have the console window.
That's where we can get our, our R code will execute and any output
generated by an R script will show up there. We can also do things
like write simple R code and execute it immediately, which can be
useful for testing out different statements and different
instructions. In the upper right, we have the global environment, and
that's actually our symbol table. It's going to show us all of the
names and variables that we've defined and what their value is. And
then in the lower right we have a window, which is the Help window.
It's also where plots will show up if you're going to plot things in
R. It's also where you can manage R vpackages. Okay, so beginning
with assignment and naming, I'm going to be typing code into the code
file. And then as we run it, we'll see things show up in the symbol
table or the global environment on the right. So the first thing I'm
going to do is I'm going to assign to the variable frodo the value 1.
Now R lets us do assignment in two different ways. I can assign using
an equal sign. I can also assign using a two character symbol that
looks like an arrow. And I'm going to use the arrow for this example
simply because it really does a nice job of representing the way
information flows in an assignment. Information always flows from the
right side of assignment to the left. And whatever the value of the
right side gets copied into the memory location attached to the name
on the left side. And in R a pound sign is a way to create a comment
and a comment is ignored by the R interpreter. And so I'm going to
say this is an equivalent assignment, using the equals sign. Okay?
Now I'm going to go ahead and save my file. And I'm going to call it
assign.R And you need to save our files with a capital R as the
suffix. Once I've saved the file, I can execute the entire file by
clicking on the Source button. And you can see that it executes the
code in the console window. And then you can see in the global
environment, we end up with a variable named frodo with the value 1.
And so we're actually creating the symbol table as we go ahead and do
the assignments. Then my next thing I'm going to do is I'm going to
assign to sam the value 1. And the other way that we can execute code
in R is if I put the cursor on a line of code and click Run, it will

execute just that line of code. And you can see that line of code
showing up in the console. And then you can also see the result of
that line of code showing up in the global environment symbol table.
So now we have two variables, frodo and sam. And frodo has the value
1 and sam has the value 2. So now I'm going to assign to mary the the
result of taking frodo whatever value is in frodo and adding it to the
value that's inside sam. So what R is going to do now is it's going
to use the global environment symbol table to look up the value of
frodo, which is 1, and look up the value, of sam, which is 2 And it's
going to compute their sum, which is the value 3. And then it will
take that value 3 and assign it to mary. So if I click Run on that
line of code, you can see it adds mary to the symbol table because
we've assigned a value to it, and it has the value 3. Now the
assignment does not create a connection between frodo, sam, and mary
in this case. And we can see that because if I assign frodo a new
value of 10 and run that line of code. It changes the value of frodo,
but does not change the value of mary. And that's because assignment
copies the value from the right side into the, into the memory
location attached with the name on the left side. And so on line 6,
when we computed the value of mary, the value three was computed from
the right side and copied to. the location associated with mary And
so then when we later on change the value of frodo, it overwrites the
old value of frodo because we can't have two symbols with the same
name in a global environment symbol table. So it overwrites the old
value of frodo and gives frodo the value 10. Okay? Now, what happens
if I try to assign to a variable, another variable that doesn't yet
exist. So in this case, I'm trying to assign to mary which does
exist, the value that's in pippen. But unfortunately, pippen does not
exist. And so the R interpreter tells us this down in the console
window and it says error object pippen not found. And that's because
pippen doesn't yet exist in the global environment symbol table. So
if I first assign to pippen a value like 5, and then I run the
reassignment of pippen to mary. Then now both of those execute safely
and after assigning 5 to pippen, it shows up in the global symbol
table. And then after assigning the value of pippin to mary, mary
also takes on the value five. If I then modify the value of pippen to
be 6, it does not change the value of mary because the assignment of
pippen to mary did not create a connection between those two
variables. It's simply took whatever value pippen was at the time,
and copied that value over to mary. When we reassign the value 6 to
pippen it does not affect the value for mary. Now, we can also do
expressions that look a little funny in mathematics where we say
pippin gets the value pippen + 1 But in computer science, this is
perfectly fine because we evaluate the value of the right side first

and the value of pippen is 6 to start And so we take that value 6 and
we add 1 to it to get 7. And so if I run this code, pippin will take
on the new value 7. And so then we can finish. I'm going to go ahead
and clear the global environment. We can do that by clicking on the
broomstick. And that's like we're starting fresh. None of the code
has been executed. And now I'm going to go ahead and step through the
code line by line, the way the R interpreter would do so. And so we
first create the variable frodo with the value 1. Then we create the
variable sam with the value 2. And then we look up the values of
frodo and sam, which is 1 and 2, add them together to get 3, and that
value gets copied into the variable mary. Then we reassign the value
10 to frodo. Then we assign a new variable, pippen and give it the
value 5. Then we copy the value of pippen to the variable mary, and
then we reassign the value of pippen to 6. Finally, we take the
current value of pippin, which has 6, add 1 to it, and reassign that
back to the variable pippen And after rerunning all of this code,
we've rebuilt the global environment symbol table, and it tells us
what all of the values are for these variables. If I were to do
anything with them on line 15. So for example, if I were to print the
value of frodo, it should print 10 to the console. And in fact it
does down here. So by understanding the symbol table and
understanding how to read it, I can always predict what an assignment
is going to do or what a print statement is going to do when I print
out one of these variables. So to review, we learned how to create
variables by assigning a value to a name. We can see those names and
their values in the global environment symbol table. R will always
execute code in the linear order, starting at the top of the file and
moving down. An assignment always makes a copy of the right side and
puts that copy into the memory location attached to the name on the
left side. And so that's an introduction to assignment and naming by
using R and the IDE RStudio.

Basic Types & Operations - Python
In this video, we'll explore basic types and operations. Each
programming language makes it possible for you to work with several
different types of data. Typically, some of these types are very
elementary, while others are more complicated. In Python some of the
elementary types are integer, float, which is for decimal numbers, and
strings, which are for character string data. Some of the most
commonly use complex types are lists and dictionaries, which we will
not look at in this video. It's important to think about what type of
information you will be working with, because that helps you determine

what kind of operations you can carry out and what sort of results you
should expect. For example, consider the following in Python. We can
do simple addition of two integers. We can add a floating point
number and an integer. We can add an integer and a floating point
number. And we can add two floating point numbers. And we see that
if we add the two integers, we got an integer result. If we add two
decimal numbers, the result will be decimal. If we add one integer
and one decimal, we still get a decimal result. This is because
Python does not want you to lose any information that is in the
decimal portion of the number. For example, if I do this addition, I
really want the answer to be 3.5. It would not be helpful if the
answer Python gave me for that was 3. We will get the same behavior
if the values are stored in names instead. For example, if I have 4
dogs and I have 5 cats, then I will have 9 pets. When this addition
is carried out, the value of dogs is retrieved from the symbol table,
the value of cats is retrieved from the symbol table, and then the
addition operation is carried out and the result is stored in the
variable pets. If I have 6 cookies, but somebody ate half of one of
my candy bars, then the total number of treats I have is 7.5, seven
and a half. The floating point addition operation is carried out
because I have an integer stored in cookies and a decimal number
stored in candy bars. It's important in each programming language to
know how different operations will behave on different types of data.
We have seen here what the addition operation does with integers, with
decimal numbers and with combinations of those two. The addition
operator, the plus symbol, is also defined for string data, in which
case it carries out a string concatenation operation. If I have this
string, 'cats ' with a space at the end, and I add it, so to speak, to
the string 'dogs', I get cats space dogs This will also work if those
values are stored in names. So I'll make animal1 be 'cats ' with a
space and animal2 be dogs. And now if I use the addition symbol, the
addition operator, we get that string concatenation. I can get a
little fancier and in this case I'm going to create a new variable,
myPets and what I'm going to do is concatenate the value stored in
animal1 with the string 'and ' with a space at the end and concatenate
that with the string stored in animal2. And so we can see that myPets
is now the string 'cats and dogs' What would happen if I tried to do
something that is not defined in Python? Like I tried to add 'cats '
+ 6. I get a nice big error message telling me that I can only
concatenate a string with a string. That I cannot concatenate string
with an int or an integer. So Python could tell that I was trying to
apply this plus symbol to a string value and an integer value. And it
says, forget it. You can use that symbol, that operation. with two
numbers, you can use it with two strings, but you are not allowed to

use it with one string and one number. The multiplication operator is
also defined for strings in Python, of course, we know what behavior
to expect if we apply that to two numbers. We see it with integers.
We can see it with a float and an integer. and we can see that with
two floating point numbers. It also works with values that are stored
in variables. So if I have 5 reams of paper, and I have 500 sheets in
each ream. In the same way that I did with addition, I can use those
names, those variables, in computation. and compute the total amount
of paper I have, which is reamsOfPaper times sheetsPerReam And as we
would expect I have 2500 total sheets of paper. If I use that same
multiplication operator symbol with a string and a number, it carries
out what we call a string multiply operation, creating a new string
that has multiple copies of the original. So if I take the string
'fun' and I multiply it times 5, I get a lot of fun. And as we've
done in our other examples, if I assign a value to greeting, I can do
multiplication of that with a number. And the order does not matter
because multiplication is commutative. And I could take that result
and assign it to a new variable. And I can see the 7 copies of the
string 'Hello ' Of course, it probably will make sense to you that the
other arithmetic operators are not defined for strings so there's no
way to use subtraction or division with string values in Python.

Introduction to Functions
This movie is to introduce the concept of functions.
We organize code by naming groups of instructions.
I'm going to draw these two purple rectangles
with a fairly lengthy set of instructions.
First of all, my pen on the paper and I
move forward by 100 steps, and I turn left in preparation
for my second edge, I move forward by 200 steps,
turn left, 100 steps, turn left. 200 steps turn left.
I've finished my first rectangle.
Time to pick up the pen, move to new location and
put the pen down again. Then I can repeat the process.
I'm going to move forward by a 100 steps and turn left 100,
one hundred, two hundred. And I've completed my goal.
I've drawn two identical rectangles with
two identical sets of instructions.
This is a problem. Whenever we have
a repeated blocks of identical instructions,
we have two problems.
One is that it makes our code longer and

long code can be hard to read and
it's harder to absorb the overall point.
Also, we have an organization that is not explicitly
demonstrated in the code. Our solution is to group
the instructions together explicitly
and give them a single name. In this case, I'm going to
take one of these groups of instructions and call
it draw_rectangle, and then I can use it twice.
I'm going to run those instructions using that name,
rather than simply having two copies of the same code.
A function is a named block of instructions with a
particular purpose. Here I demonstrate
how we might draw, make our function that
we'll call draw_rectangle. It has a copy of all our
instructions in there, and we write it just once.
Then in our main code, we refer to it simply by name.
We say draw a rectangle, then we can pick up a pen,
moved to a new location, put down the pen,
and draw a rectangle again. So our organized instructions
now include a function with a name,
the definition where it has all of those
instructions in it. And then we have
overall code that is easier to read. Thank you.

Calling Built-in Functions
This video is about calling built-in functions. To take advantage of
functions, they're part of programming languages, we need to call
them. print is a function that is common to almost all programming
languages. And here is an example of a line of code that calls the
function named print, giving it the input "Hello, World". I just used
the term call, but there are three words that are equivalent. We can,
we can say the function is called, that it is executed, or that it is
invoked. And I like to think of this as a two-step process. First,
the value of the input is sent to the function and then the function
executes its instructions. This code results in the message "Hello,
world" being printed to the screen. Some functions return values.
Many programming languages come with libraries that perform
mathematical functions and many of those return values. Let's
consider the function here that will compute the average of all the
numbers in a list. This example, I've got the list 5 6 7. We're
going to compute the average. I'm expecting the output to be 6.
Let's step through the process of executing this function. So I have
my line of code with the input. When we call the function. Now

there's three steps. The input is sent to the function. The function
executes its instructions, and then the value is returned from the
function. And we illustrate it like this. So step one, I'm putting
that value in, sending it. Step 2, the function is executing. I'm
not actually showing it here on the screen because I don't know what
the code is in that, I don't need to. All I know is it's doing its
thing. And then a value is returned. And I'd like to illustrate that
by showing okay, the function is executed, which means it's no longer
running. We cross it out and we'll replace it by the value that that
function returns. And it's really useful to have functions that
return values, but we need to do something with that returned value.
So I'm going to repeat the example now but I'm going to put it in the
context of code that is a little more useful. So this code here calls
compute_average, but notice it's on the right hand side of an
assignment statement. That arrow means I'm going to assign the return
value from compute_average to a variable named mean. So now this is
imbedded in a two-step process. First I'm going to call my function
compute_average. And second, I'm going to take that return value and
assign it into a variable. So I've got my symbol table all set up on
the right. I'm calling my function, sending it input. Now it's doing
its thing computing 5, 6, 7, getting, it's gonna get me 6. It's
done. It says, I've finished, my value is 6. So now it's time to
finish the assignment. Now I have an assignment statement in which 6
is going to be assigned to the variable named mean. It gets added to
the symbol table. And voila, we can use a variable named mean now to
print out or do whatever we want to do with the average of the list 5
6 7. But there's one more thing that often happens and that is that
when we call function, we're not just writing the list value directly
in there. We might have that list, or maybe a data frame if this is
R, in a variable. So I want to go through this example one more time
showing how we take the input and pass it into the function. So
again, I have pretty much the same example. I'm going to compute the
average of the list 5 6 7 and put it into a variable named mean. This
time though, my symbol table already has a variable named nums whose
value is a list 5 6 7. And, as before, first I need to call the
function and then I need to finish the assignment statement. So here
step 1 means instead of just trying to pass in some variable I go to
the table, I look up the value, I take that value and that value is
what gets sent to the function. Then compute average does its
computation. And when it's finished, it says, I'm done. Here's your
value, it is 6, and then we finish the assignment statement. Thank
you.

Calling Functions in Python
This video is about calling functions in Python. I'm going to use the
print function as my running example. Most programming languages have
something akin to print. Most functions accept some sort of input and
the technical term for the input to a function is an argument. Here I
show print with the argument "hello". An argument can be a literal
value such as number 4 or the string "hello" or it can be the value of
a variable. So here I have print and I'm calling it with the variable
name num1 in between the parentheses. Or an argument can be something
more complicated, such as the result of an expression. Over here, I'm
calling print and the argument is the result of adding the value of
num1 to the value of num2. Let's step through that code in
PythonTutor. Okay, I have first an assignment statement in which I
assign a literal value 42 to variable named num1. And then another
assignment statement where I assign the literal value 31 to a variable
name num2. And then I call print, passing it the argument "hello".
And hello appears. Next I call print, and I'm passing it the value of
the variable num 1. So what Python is doing is looking at the value
of num1 and passing in 42. So it prints 42. And finally, I have a
mathematical expression the results of which becomes the argument to
my function. Python looks up num1, gets 42, looks at num2, gets 31,
add them together, gets 73, and then prints that. Many functions have
more than one argument possible. And print is one of those. You can
print more than one thing by passing in more than one argument. And
in the examples that I have here, I'm using what's called positional
notation. So Python prints the value of the first argument first then
the value of the second argument, second, and the value of the third
argument third. In this example print I print "Nums are" then the
value of num1 and the value of num2. In this example, I print "Their
sum is" and then the the value of num1 added to the value of num 2.
Let's step through that code. We have the same assignment statements
we had in the previous example. Then we print "hello" with just one
argument. And then we print "Nums are" with two additional arguments.
And each one's evaluated separately. We look at the literal value
"Nums are" then we lookup the value num1, then num2, and it prints all
three. And finally we print "Their sum is" and just like in the
previous example The value num1 is looked up , the value num2 is
looked up, and then the values are summed and so we print "Their sum
is 73" In many functions the parameters have names, and we can call
functions with what are called keyword arguments. And that's where we
refer directly to the name of the function, sorry, the name of the
parameter. So here's the documentation for print and we can see that
takes in a bunch of things that we needed printed. But then it has a

special a parameter named sep for separator. And by default, its
value is just a space. And the documentation here tells us that it
will separate each of the objects that's being printed with whatever
is the value passed in here. To specify that I will use the keyword
sep then. So here I have, I am calling print with num1, num2, and
then I'm indicating that as a separator, I want to use the plus sign.
This is called a keyword argument because I put the name of the
parameter first and then an equal sign. And this is a fairly complex
example because I'm using two positional arguments and then a keyword
argument. Down here I'm attempting to use a keyword argument and then
a positional argument, but this is not legal. Any keyword argument
needs to be followed by all keyword arguments. So you can put
positional arguments and keywords, but not the other way round. Let's
look at PythonTutor. Here we have the same assignment statements.
Oops, but I grab the code that doesn't work. And now we can see the
error that is reported to us. It says positional argument follows a
keyword argument. Can't have a positional argument after a keyword
argument, it simply won't work. So we comment it out. And then we
run. And we can run our assignment statement and our next assignment
statement. And then we print, it looks up the value of one. It looks
up the value of num2, and it says I've got a separator for you. So
it's going to write 42 plus 31. And we are done with that. Let's
move to a more complex example. We can call a python function with
the output from another function. So we talked about how we can have
more complex things such as mathematical expressions as, as arguments.
But we can also actually take the output of another function and pass
it in. So here I'm using three functions that are built into Python.
len which provides the length of a list, print, and sum which sums up
the values of the elements of a list. I first make a variable named
nums that has the value [5,6,7]. I call length len function with nums
as its input and its output is the value is the length. I'm going to
store that in a variable named N And then I can do a print statement
just like we did in the previous slides, where we print the length
with a literal string that says what it is we're printing and then we
have a comma and then we have a variable name. You look that up, and
that's when the value that's printed. But we could do it directly we
could skip the whole process of using the variable and instead just
take this function call and put it here. Anyway, Python will execute,
It will call print and then evaluates what arguments are. Because
that's a literal I know how to do that I'm going to pass that right
along in with this I got a call function. I pass in the list nums
which I had to look up And sorry, I have to pass in a list that nums
refers to, which is 5, 6, 7. The value 3 is returned.k. Finally, I
can, I include the output of functions in expressions. So in this

case, sum and len both return numbers So I can divide one by the other
and that gets the mean, and I can print that out. Let's look at
PythonTutor. Have my assignment statement, nums is the list 5, 6, 7.
And then I assign N to have the number of elements in nums. Then
finally I print then accessing a variable, that is three. And I print
again where I'm evaluating len directly in there, I get the same
thing. And then I call sum passing in nums. It gets me a number. I
call len pass in nums That gets me another number. And I do division.
And then I print out the result, which is 6. Thank you.

Calling Functions in R
This movie is about how to call functions in R. Let's begin with a
simple helpful function, print. To call a function, I need to supply
it with one input and that is what needs to be printed. The technical
term for this value right here is called an argument. That's what we
pass into a function. And here I'm using a string literal "hello" and
it prints out "hello". Now let's switch to a function that has more
possible inputs, more arguments. Another technical term: when we look
at the help, the, which often includes the definition of the function,
we call it a parameter. And when we, when we call the function,
execute the function with the value we pass, it's the argument. And
whenever we call a function, we need to have the arguments match up
with the parameters. So for sequence where we're going to focus on
these three parameters:from, to, and by. So the starting point, the
stopping point, and the step size of our sequence. We need some way
of having R understand which argument is for from, which is for to,
and which is for by If I supply it with seq(1, 5) then it's going to
match up this argument 1 with the parameter from, because it's going
to go by position, the first argument is going to be associated with
the first parameter and the second argument, 5, is going to be
associated with the second parameter, just to, t-o. So that should
produce the sequence 1 2 3 4 5 which it does. Now this sequence this
function here, seq has what are called default values associated with
each parameter. So if you don't supply a value for from, it's going
to use 1. If you don't supply a value for to, it's going to use 1.
If you don't supply a value for by, it's going to calculate the step
for you. And these integer sequences, it's going to be 1. So the
implication here is that I can call seq, without any input and it'll
just give me 1. And notice even though it's got five parameters
because they've all got default values, I can supply a subset of them.
So for example, if I wanted to do 1 3 5, I could do the 1 and the 5
that I've already done and make my step size 2. There's another way
that R can match up arguments with parameters, and that is by name.

You can actually include the name when you're calling the function.
So I could say this from is 1, to is 5, and by is 2. And I get the
same sequence. And the beauty of this method of calling is that order
no longer matters. So I could say, well, it's more natural for me to
think about it as start, step, stop. I'm going to write it like that.
This also has the advantage of being very readable. R can handle a
mixture of arguments that need to be matched by position with
arguments that are matched by name. So I can simply say 1. And then
I could say by is 2 and to is 5. We have the same thing. R is rather
sophisticated in its in how it does its matching up. I don't really
recommend doing things out of order like this, but, but we could say
from is 1 and then give it the number 2. And then say to is 5. And
what R will do is it will say, I'm matching from by name and to by
name. This value right here, the number 2 doesn't have a name
associated with it, so I need to do it by position. So what I'm going
to do is scan through all my parameters and say, have I already match
this by name? No, have I already match this by name. Let me start
here. I already mentioned from my name, yes. He managed to buy
it. No, I haven't. So this number 2 Sorry. I have already mentioned
to you by name. It's by that hasn't been matched yet. So this number
2 must be associated with by. So this must also be start at 1, go to
5 and step by 2. And it is. I recommend using the match by name. It
just reduces confusion. So we've, all the examples that we've had so
far are having arguments that are either numbers or strings. So these
are what are called literal values, I should write the value in and
pass it to the function. But you could also use variables. So let's
set up some variables. I have my starting point, which is 1, by
stopping, which is 5, and my stepping, which is 2. And I could call
something like this, from equals starting, to = stopping. And by
equals stepping Further, we could use something more complicated, not
just refer to a variable. But we could actually use an expression
involving variables. So let's use a simple mathematical expression.
Let's say we want to go to bigger. Forget stopping at the stopping
point. I'm going to go one big step further and add 2 to that. So
now my argument is actually the result of the expression stopping + 2.
So that should be 1, 3, 5, 7. And in fact it is. So we've gone over
so far how to match up arguments or parameters, that's either by
position or by name. And what kinds of values or arguments can be.
They can be literal values. They can be the values of variables, they
can be the values of expressions. And I have one more example I want
to show. And that is the fourth kind of thing an argument can be is
it could be the output of another function. So one simple example is
print needs an input. I can simply give print the output of calling
seq. So here the argument to print is the output of my seq function.

Let's make a example. we had in the earlier movie where our sequence
was 5, 6,7 From is 5, to is 7. So nums is 5 6, 7. Awesome. Let's
just show you that we can type mean nums. That's a built-in function
at num pi that R has or instead of saving the sequence in a variable
named nums, I could just build it on the fly and pass it in. And
there it is. The mean here took this output of calling this sequence
function freshly rather than just from a variable. Thank you.

Defining your own functions - Python
In this video, we talk about defining your own functions. Before you
write your own functions, it is helpful to understand that when a
function is called by the main program, control is passed from the
calling program to the function, the function code executes, and when
that process is complete, control is returned to the calling program.
We can think of this as program execution taking a bit of a journey
from the calling program to the called function and back again. While
the function that was called is executing, the program that called it
does nothing. Its execution is paused until the function completes
and then when the function returns control, the calling program can
continue executing at the point just beyond the function call.
Control is always passed but there's also the issue of whether or not
information is passed between the calling program and the function.
When we consider this aspect of function usage, there are four
possibilities for the connection between a function and the program
that calls it. In this video, we work through all four of those.
This should give you an understanding of the different ways in which
you can write functions to do some of the work required in programs
that you develop. We'll start with the simplest situation, a function
that has no parameters, so it receives no information when it is
called and it returns no information. A function like this would be
useful if you wanted to create a nice user interface for your program,
perhaps by displaying a menu of options for the user. For example,
let's consider a function that displays the menu for an inventory
maintenance system. We can call that function with a very simple
statement shown here in the main program. Just like when you call a
built-in function, execution of the call to the menu function causes
control to pass to that function. The function will execute one line
at a time and when the return statement is reached, control goes back
to main. main starts up after the call to menu, which in the example
is the print statement that prints OK. We can see this process in
Python Tutor. This is the same code that was on the slide, and we'll

visualize the execution. The first thing that happens is Python
indicates that it knows that the menu function exists and it knows
that the main function exists. And then it calls main. main in turn
calls menu. And now each statement of menu will execute. We can see
here on the right that the menu, is going to be printed out one line
at a time. And that keeps going until execution hits the return
statement. return basically says send control back to whoever called
the function. In this case, control will go back to main. You can
see that menu is getting ready to return and it says that there's no
return value, that the return value is None. And so when we execute
the return, we can see that control is now back in main at the
statement immediately after the call to menu, which is the print
statement, and that print statement executes, giving OK in the output.
The next kind of function is one that receives some information but
does not return any information when it finishes executing. This
setup is common. If we write functions that are used to generate
nicely formatted output. For example, if we stick with our inventory
example, we might have a function like this prettyPrint function.
When prettyPrint is called, three pieces of information, present in
the function call are passed to the three parameters in the function
definition, giving those parameters values that are used during
function execution. We can see this unfold in Python Tutor. So we
see that prettyPrint is defined, main is defined and then main calls,
main is called main calls prettyPrint. And we can see that the
assignment of values to parameters was done at the time of call. So
this string "no name laptop" was assigned to the parameter item in
prettyPrint. 25 was assigned to quantity, and 750 was assigned as the
value of price. And control has been given to prettyPrint. So now
prettyPrint will execute one line at a time. The first line of output
says that in inventory we have 25 of "no-name laptop" because 25 was
the value passed to quantity and "no name laptop" was the value passed
to item. In the second line price will have the value 750, and the
total will be computed from this multiplication between quantity and
price. So information came into prettyPrint when it was called, it
does its output operation, no information will be returned. And so
again, we see that the return value will be None and control goes back
to main, and because there is no other statement, that's the end of
the program. Next, we'll define a function that has no parameters, so
it receives no information, but it does return information. You would
use a function like this to perhaps display a menu as we did earlier,
and also get the user's choice and return it to the calling program.
Calling this function is a bit different than when we called our
original menu function because now we have to have a variable that can
receive the value returned by the function. The way to think of this

is that the call to userOption on the right-hand side of this
assignment will be replaced by the value that is returned from the
function. And then that value will be assigned to the variable on the
left, in this case the variable action. And then I will verify that
that worked by printing out the value of action afterward. userOption
is defined and we see it expects no values because it has no
parameters. main is defined and then main is called. So here we are
at line 14, the assignment statement. The assignment cannot take
place until there is a value on the right-hand side. And there will
be no value on the right-hand side until the function userOption
executes. So the call is made to userOption. The menu is printed
out. And here we are at line 9 which is the place where the user is
asked for input. And we'll enter our choice. If you were running in
regular Python, not in Python Tutor, you would just type your choice
and hit Enter. Here I'll type my choice and click Submit. And now we
can see that we're at line 10, which is the return statement, which
will return control. But we're also returning the value of choice.
That is, we are returning the value associated with the variable
choice in userOption, which is that character 'a' that I entered as
my, my option. This means that the return value, instead of being
None as it was earlier, is now the string 'a'. Control will go back
to main and we can see now that the assignment has taken place and
action, the variable action, has the value 'a' Next the blank line
will print, and then the message confirming the user's choice, the
user's desired action. Finally, our last category of function is
those that both receive information and return information so they
have parameters and return values. These are functions that we
generally use to do calculations. The vast majority of functions you
write will be this kind of function. Information is passed to the
function. The function carries out some calculation that is relevant
to the problem being solved, and then it returns the result. We can
see this with a variation on our earlier prettyPrint function. This
time, I'll leave that printing in main but compute the value of that
item in a separate function. We'll head to PythonTutor once again to
visualize execution. The value function is defined. main is defined.
We call main. main will assign 25 to quantity, "no name laptop" to
item and 750 to price. And then it calls a print statement, passes it
some information, so the print statement generates a statement about
the the quantity of "no name laptop" we have. And then the program is
ready for the next print statement. But the second print statement
cannot actually execute until it has all of its component parts. It
won't have the last piece of information until it calls the value
function and value returns a result. So it calls value, passing it
quantity and price. And we can see that the value function now has

its own memory space and its own variables for quantity and price.
Generally, you do want to use the same names in a function as you used
in the calling program because it makes your code more readable and
understandable because the quantity variable in value is fundamentally
referring to the same thing as the quantity variable in main. Our
value function is so simple that it simply does the computation needed
in the return statement and returns the resulting value. So we can
see that the return value will be 18750. And when that value is sent
back, it will be plugged right into this spot in the print statement,
and the print statement can execute. Finally, we'll look at an
example where we have two user-defined functions and one calls the
other. Basically, we have both our earlier prettyPrint function and
our value function. Originally prettyPrint did a computation directly
in the second print statement. But in this version I have modified
prettyPrint so that it calls value to do the computation. So the main
program sets up the call to prettyPrint, passing it three pieces of
information. One for the item, one for the quantity, one for the
price. So I can see that prettyPrint now has its three pieces of
information. And because it has those three pieces of information, it
has the information it needs in order to call value function. So the
first print happens and then the second print statement in prettyPrint
will call the value function. It is passed, value is passed the
quantity and price information. And we can see once again, it can
return the 18750 which will come back to prettyPrint and get printed
out in the second print statement. That wraps up our tour of the four
different kinds of function setups you can have when you write your
own code, when you write your own functions. So when writing your own
functions, you always should consider the following. What part of the
program's job can you compartmentalize into a function? You want to
think in particular about operations that need to be done more than
one time, so writing that code once, but using it from different parts
of the program is helpful for the development of your program. You
want to think about whether the function needs to receive any data in
order to do its job. And, if so, exactly what data does it need. And
you should think about whether the calling program needs to receive
results from the function which is connected to the job that the
function is doing. So you need to be clear on how the results will be
used by the calling program. You should answer these questions and
think about the flow of control and the flow of data before you
actually write any functions. Thinking about these questions,
answering these questions, while you're developing the design of a
program will save you a lot of trouble later on as you're writing code
and trying to get your programs to work.

Defining your own functions - R
In this video, we talk about defining your own functions. Before you
write your own functions, it's helpful to understand that when a
function is called by the main program, control is passed from the
calling program to the function. The function code executes, and when
that process is complete, control is returned to the calling program.
We can think of this as program execution taking a bit of a journey
from the calling program to the function and back again. While the
function that was called is executing, the program that called it does
nothing. Its execution is paused until the function completes. And
then when the function returns control, the calling program can
continue executing at the point just beyond the function call.
Control is always passed. But there's also the issue of whether or
not information is passed between the calling program and the
function. When we consider this aspect of function usage, there are
four possibilities for the connection between a function and the
program that calls it. In this video, we will work through all four
of those. This should give you an understanding of the different ways
in which you can write functions to do some of the work required in
programs that you develop. Typically, in R programming, you're less
likely to see all four of these, then you might in other languages.
But this will give you a sense of what the possibilities are, which
will be useful if you change to other languages in the future. We'll
start with the simplest situation, a function that has no parameters,
so it receives no information when it is called and it returns no
information. A function like this would be useful if you wanted to
create a nice user interface for your program, perhaps by displaying a
menu of options for the user. For example, let's consider a function
that displays a menu for an inventory maintenance system. We can call
that function with a very simple statement that I have here on the
left but we'll see that at the end of the code when we go into R. So
let's see what happens when we run it. Here's the same program using
RStudio as the development environment. I'll go ahead and run it.
And we can see that all of the menu options are displayed as a result
of the call to the function that was made at line 11. And then we see
in the output the OK which I put in just as a confirmation that the
function finished, finished execution and we reached line12. Just
like when you call a built-in function, execution of the call to this
menu function causes control to pass to the function. The function
will execute one line at a time. When the end of the function is
reached, control goes back to the calling program, which continues
executing after the call to menu, printing out OK at the print
statement. The next kind of function is one that receives some

information but does not return any information when it finishes
executing. This setup is common if we write functions that are used
to generate nicely formatted output. For example, if we stick with
our inventory example, we might have a function like this, which is
designed to provide nice output. When prettyPrint is called, three
pieces of information present here in the function call are passed to
the three parameters in the function definition, giving those
parameters values during the function execution. Again, we can see
that in R. Here's the prettyPrint function. It's set up to receive
three pieces of information, the item name, the quantity, and the
price. In the call, we pass values for those three parameters. We
pass these three pieces of information. In the function, I'm using
the R paste command, a call to the paste function, to do string
concatenation. And when the function runs, we see the printing of the
two lines of information. So again, control at line 8 is sent to the
function, along with the three pieces of data, the three pieces of
information. The function executes one line at a time, using the
provided information as necessary, completes its job, and returns
control to line 8 where the call was made. Next, we'll define a
function that has no parameters, so no data comes in, it receives no
information when it is called, but it will return information. You
could use a function like this to display a menu, as we did earlier,
then get the user's choice and return it to the calling program.
Calling this function is a bit different than when we called our
original menu function because now we have to have a way to capture
the value returned by the function. We handle that by putting the
call to the function on the right hand side of an assignment. The way
to think of this is that the call to userOption will then be replaced
by the value that is returned from the function. And then that value
will be assigned to action on the left of the assignment. And I can
verify that it worked by printing out the value of action after the
function execution is complete. We'll see this in R. In my
userOptions function. I am using an explicit return statement at the
end of the function at line 10, although in R, it is not necessary to
have an explicit return. If I took line 10 away, whatever line 9
computes is what would be returned by the function. Since many of you
watching this are new programmers, however, I think it's helpful for
you to have the explicit return statement. Now, I'm going to execute
this and at line 13 the assignment cannot happen until the call to
userOption executes and the return value becomes available on the
right-hand side of that assignment statement. So I've hit Run. We
can see in the console window that execution basically paused here at
line 9. And the readline is waiting for the user to enter their
choice. So I'm going to enter 'r', type 'r' and hit the Return key.

Once I do that, line 9, the readline, is complete. It assigns
whatever I entered to the variable choice, and then that value is
returned to the call at line 13. We can think of this right hand side
of the assignment, the call to userOption, as being replaced with that
character 'r' which was the return value. And that value is then
assigned to action. And we get confirmation of that when line 14
executes and the user's choice is printed out. Our last category is
functions that both receive information and return information. So
they have both parameters and a returned value. These are functions
that we generally use to do calculations. Information is passed to
the function. The function carries out some calculation that is
relevant to the problem being solved and then returns the result. We
can see this with a variation on our printing operation. In this
case, I've put the printing steps in a main program, but I'm computing
the value of the item, in this separate value function. The function
call has two parameters, so we pass two pieces of information, one for
the quantity of an item and one for the price. The function will
return the total value of those items. And so we can see that my main
program consists of some setup where I assign values for quantity,
item, and price, and then I set up my print statements. I set up the
information that will be printed by creating the string
concatenations. And in this second one, I have a call to value. We
can see this a little more easily in R because the, the way the line
wrap is not used here. I did need it on the PowerPoint slide. So we
can see here I'm setting up values for quantity, item, and price. I
set up the string that will be the first line of output. And when
it's time to build the second line, I have the call to value, which
will pass the value of quantity, the value of price. Those come to
the function. The computation is carried out, the value is returned.
It replaces this function call. And there's an actual number that can
then be used as part of the output. And so when I run this I can see
that that place where we had the function call was effectively
replaced with the result of that multiplication 18750. So I want to
look at one final example where I have two user-defined functions and
one calls the other. The main program starts here at line 13, where I
initialize quantity, item and price, and I make a call to prettyPrint.
So this looks a lot like my original prettyPrint example. But when I
look at this version of prettyPrint, it's not doing the computation
in, in place. It's calling the value function. So I've written two
functions, my prettyPrint function and the value function and my
prettyPrint function, will call the value function. So the main
program sets up the initial values. It makes the call to prettyPrint,
passing three values which come into prettyPrint as the item, the
quantity and the price. And then prettyPrint will call value, passing

the quantity and the price, value will do the computation. It returns
to prettyPrint, which finishes its job, and returns control to the
main program. And in this case there is no additional work done by
the main program. So this gives you a sense of how you can create the
same kind of sequence of function calls and operations that you have
when you're using built-in functions in R as well. So that wraps up
our tour of the four different kinds of functions setups you can have
when you write your own functions. When you write your own functions,
consider the following things. First, what part of the program's job
can you compartmentalize into a function? You want to think in
particular about operations that need to be done more than one time.
Writing that code once, but using it from different parts of the
program is helpful for the development of your program. Second, you
want to think about whether the function needs to receive any data in
order to do its job. If so, exactly what data does it need? And you
want to think about whether the calling program needs to receive
results from the function. And that's related to what the job is that
the function is doing. So you want to be clear on how the results
will be used by the calling program. You want to answer these
questions and think about that flow of control and that flow of data
before you actually write any functions. And that will save you a lot
of time and a lot of trouble later on as you're writing code and
trying to get the program to work.

Memory Models for Sequences
In this video, we're going to discuss sequence memory models. You
should already know some simple data types. The most common are
numbers in their various forms like integers and floating points or
floats, and Booleans, simple true, false statements. There are some
more complex data types. Some of these are composed of elements and
you can think of elements as things that you can go through one at a
time. And you may already know one or more of these types of data.
For example, strings are a very common sequence. Things like "harry",
"ginny weasley", and "he who shall not be named". But there are also
things like lists, or vectors, and data frames. And we'll cover some
of these lighter. We'll start with strings. Strings are a good
example of a sequence. So what are the properties of a sequence?
Sequences have elements, and when we're thinking about strings, those
elements are the individual characters in a string. For example,
'harry' is composed of the letters h, a, r, r, y Sequences also have
length. The name 'harry' is five characters long, as you can see from
the way I broke out the letters just above, if we look at a string

like 'ginny weasley', that's 13 characters long. it's important to
remember that in strings, the space counts as just another character.
And sequences also have order. The order of the letters is not
accidental. There is very much a first letter and then a second
letter and a third and so on and so on. So if we consider the name
'harry', it should be no surprise that the first letter of 'harry' is
the letter h. The second letter of 'harry' is a. And so on. The
thing about these order positions of the sequences is that we can use
them, we can use them to access individual elements or sub-sequences.
And depending on the language, those ordered positions are numbered
slightly differently. For example, in languages like Python, Java,
the first position in any sequence is position 0, followed by 1,
followed by 2. In a language like R, the first position is 1,
followed by 2, followed by 3 and so on. Other than this difference in
starting position, the way that we use those positions is exactly the
same. So for example, if I have a sequence in R, This would be, for
example, a text string. Here it is the name harry. Then I number the
positions of each element of that string, starting from the number 1,
that the letter h is at position 1, the letter a is at position 2. We
call those positions index values or indices. And it's worth noting
that for any language that starts counting at 1 for a sequence, always
know the index position of the last element because it's exactly the
same as the length of the sequence. It's exactly the same in Python
with that one slight difference of the starting position. Here's the
same string. But in Python, that letter h would be at index position
0. The a would be at 1, r will be at two. And when we're dealing
with languages like Python, it's always worth remembering that the
index position of the last element is the length minus 1. Harry has a
length of five, the index position of the y, the last letter is 4.
And strings are not the only sequences you'll come across. Lists or
vectors are also a very common sequence and they have some particular
properties. For example, lists a heterogeneous, you can store all
kinds of data in them, but they still ultimately obey the same rules.
For example, lists have elements, lists have length, and lists have
order. I've given you an example here of a Python list comprising
five integers, one through five. And if I were to represent that, you
can see the five integers 1, 2, 3, 4, 5. And here I'm representing
them with Python indexing starting at 0. So at index position 0 is
the integer 1. At index position 1 is the integer 2. And again, the
index position of the last element is the length of the sequence minus
1. There are 5 elements in the sequence. It has length 5. The last
index position is 4. And just to touch on how these things are
represented in memory, there is a difference between them. Strings
are represented directly. Here, we're showing you the symbol table

that you've seen before. On the left-hand side are the names as they
are represented in the computer. And on the right hand side is the
value associated with that name. When we create a string, for
example, harry, we associate the value harry with the name of the
variable, in this case name, in the table directly. But other types
of sequences and indeed other data types are represented slightly
differently. Here you can see the name of my variable, numbers,
appears in the left hand side of the symbol table. But on the
right-hand side, instead of representing that information directly,
what I'm doing is creating a vector of the integers 1 through 5.
Instead of directly placing that in the table, I have instead a
reference to those values. And that's going to be important for some
things that we do later on. So things like strings, we represent
directly, things like lists and vectors we might represent indirectly
by using a reference. And that's what that arrow is there to
represent. We can access elements of a sequence using those index
values. So for example, if we want to access a substring, then we
need to know the index values of the substring we want to extract. In
the case of getting the letter h from harry, we need to know that in
R, that's the first element. So that would be index position 1.
Similarly with numbers, the list or the vector, if we want to access
the second element of that list, we need to know it's index number.
That would be 2 in R or 1 in Python. And there's one further piece of
information. We cannot change the elements of a string because
strings are immutable. So what does that mean? It means that just
because I know the first element of harry is the letter h, I cannot
change the first element of harry to be a different letter, will
either get an error or will end up replacing the whole association
between the variable name and the value. Conversely, we can change
the elements of lists or vectors. Lists have a property in that they
are mutable, we can change them. So if I try to change the second
element of this vector, that value that is currently 2, to 99, it will
actually change. And in R I can do that by referencing the variable,
giving it the position in square brackets that I want to change and
then making an assignment. And that will actually change the second
element of that vector. And that's going to conclude us talking about
the memory models of sequences for now.

Memory Models for Dataframes
So the most important components of a computer are its processor and
memory. The processor is the piece that does all the actual

computation. And memory is where both the programs and the data that
is processed by these programs is stored. In order to execute a
program, what the processor does is it gets one program instruction
from memory. It then retrieves all the data from memory that are
specified by this instruction. It manipulates the data according to
the instruction and then writes any possible results back to memory.
And then it just does this over and over again until the program is
complete. So a computer essentially has a processor that's
interacting with memory. This memory that I've been talking about is
sometimes also called working memory because it's not persistent. So
that means that when we turn the computer off, anything that's stored
in this memory gets erased. Now, of course, we sometimes need to
store things more long-term and one device on which we can store
things long-term, even when the computer is turned off is a hard disk.
So data often gets stored on hard disks in the form of spreadsheets.
So for example, here's a spreadsheet that shows emissions_data for
different countries. Right, I open the spreadsheet in Excel. You've
probably all seen this before, right? The spreadsheet has four
columns. The name of the country, the particular year, the amount of
CO2 emitted by that country in that year, and the amount of methane
emitted by that country in that year. And so that spreadsheet might
be stored on a hard disk or it might be stored somewhere on a cloud
server. That's another common option these days for storing things
long-term. If we want to process this data, if we want to analyze
this data, if you want to do anything with this data through a
program, we first have to, or the program first has has to load this
data into memory. And here is one example or one program that does
this. So in the rest of the video I'm going to talk about what
happens when spreadsheet data is loaded into memory so that a program
can process it and analyze it. So what you see here are the first two
lines of a program for analyzing the emissions_data. The first line
simply associates a filename. Sorry, it simply associates the
filename, which is the string emissions.csv, with the name filename.
So when the first, when the processor executes this first line of the
program, something changes in memory. And specifically what changes
is that in the symbol table will have a new name. The name is
filename. And associated with this name, filename, will be the string
emissions.csv You should be familiar with this from previous videos
that you have seen. Right, so this first line of, of, of the code
here is just a simple creation of a new name. Now the second line of
code, if you look at this, also adds a new name to the symbol table.
So the left-hand side of this, of this line of code looks exactly the
same pattern as the previous line, right? So it will introduce a new
name. The new name will be emissions_data. And then the question is,

what will be the value that will be associated with that name? As you
can see in the program, the function read_spreadsheet is called and
the name, the filename, so emissions.csv, is passed to that function
as a parameter value. The function read_spreadsheet is a function
that produces a representation of this spreadsheet data that are
stored on the hard disk in memory. So it produces a memory
representation of the information that's stored in that spreadsheet
file on the hard disk. In many programming languages, this kind of
data representation is called a dataframe You can think of a dataframe
as representing a table that consists of multiple columns of data. So
perfect for representing spreadsheet data In this case, right?, the
dataframe has four columns. The country, the year, the CO2 emissions,
and the methane emissions. Exactly the same information as is stored
in the spreadsheet on the hard. disk. One important detail to notice
is that the spreadsheet data on the hard disk and the dataframe in
memory, that they are two different things. So the spreadsheet is
still stored on the hard disk but now in addition, we have a dataframe
in memory which represents the same information. So they represent
the same information, but they're two separate representations of the
same information. If we, and what that means is if we change one of
them, the other one will not be affected. So for example, if I now
opened this spreadsheet on the hard disk with Excel and modified the
spreadsheet file the spreadsheet file on hard disk would be changed
but actually the dataframe, because the dataframe was created before I
made that change on the hard disk, so the dataframe would still
reflect the old data. And the reverse is also true. If my program
makes changes to this dataframe by changing certain values or maybe
adding a row at the bottom, the dataframe in memory changes. But the
spreadsheet file that is on hard disk does not automatically gets, get
modified as well. Another important detail to notice is the way how
we represent the association between the name emissions_data and the
data frame. So you can see here the way we are visualizing it is by
just drawing an arrow that starts in the values column, column of the
symbol table and then points at the dataframe. So if you've watched
videos about sequences before, you've encountered this kind of arrow
before. If you have not watched the videos about the sequences, then
this is new for you. And in that case, all you've seen so far is
names in the names column of the symbol table that are associated with
values that are listed in the values column of the symbol table. And
so the filename here's an example of this, right? With dataframes,
this kind of representation is hard to do because dataframes represent
a whole collection of values, right, they don't represent just a
single value. And also dataframes can grow and shrink. So for
example, as I just mentioned before already, you know, we might add a

row to the dataframe or we might delete a row. So the processor won't
know at the time where this name emissions_data is created and added
to the symbol table, the processor doesn't know how much space it will
ultimately need in the values column to represent the whole dataframe.
And so instead, the dataframe is stored somewhere in memory, and then
in the symbol table, the processor just stores a reference to the
memory location where the dataframe is actually stored. And we
visualize this by drawing an arrow that starts in the values column
and points at the dataframe. So in this video you have seen what
happens when a program reads data that are stored on a long-term
storage device like a hard disk or a server in the cloud and reads it
into memory. And you've seen what dataframes to represent tabular
data look like when they're associated with a name in memory. In the
next video, we're going to explore programs that manipulate
dataframes.

Working with Dataframes
So in the previous video you learned what happens when a program reads
data from a spreadsheet file into memory. For example, these two
lines of code could be the beginning of a program that analyzes the
data stored in the spreadsheet file emissions.csv. There. The, when
these two lines of code are executed, you end up with two entries in
your symbol table. You end up with a name filename, and you end up
with a name emissions_data. The name filename is associated with a
string, the string emissions.csv, and the name emissions_data is
associated with reference to a dataframe. And, as you also learned in
the last video, a dataframe is a way of representing tabular data,
like for example, data that comes from a spreadsheet. In this video,
we're going to introduce some typical ways of how programs interact
with dataframes. And we're going to show you how this interaction
with the dataframe affects what is stored in memory. We're first
going to look at a number of ways to access information in the
dataframe, so we just access it, and then we're going to look at ways
to modify information in the dataframe. So in this first example, we
are accessing a particular column in the dataframe, and we're
specifying the column we want by its name. The first two lines are
exactly as before. So we have our name, filename, we have the name
emissions_data in the memory and they're associated with the same
values as before. And then in the third line, we call a function
called get_column. So the purpose of this function is to get all the
data that is in a particular column in the dataframe. This function

needs two pieces of information. It needs to know which dataframe we
want to access, and it needs to know which column we want, we want to
access. And then it returns all the data in that column as a sequence
of values. So in this example here, we're accessing the dataframe
that is associated with the name emissions_data, the first piece of
information we're giving, and we want all the data that is in the
column that has the name country. So we're giving the name of the
column as a string here. So this column contains a sequence of
strings, right? So it's all the values that are in this column and
those are all strings representing country names. Another thing that
this third line of code does is it creates a new entry in the symbol
table. In the symbol table, the first part of the line here creates
an entry for the name countries. And then this name countries is
going to be associated with a sequence of values, and those values are
going to correspond to the values taken from the column that has the
name country. So in this case, the sequence of values might look
something like this. USA, USA, Canada and then so on a list of other
country names. Sometimes we may want to access a column not by its
name but by its number. So this may be because we are accessing or we
are working with a dataset that doesn't have column names. Or there
could be some other reason for it. And this example, again, it starts
out with the same setup as before. emissions data, filename, same as
before, but now we're using a function get_column_by_number. This
function also needs two pieces of information, right? We still have
to say which is the dataframe that we want to work with. But then
instead of giving the name of the column we want to access, we give a
number that indicates which number column we want. For example, in
this case, if we say the column with a header country is column number
1. column number 2 would be the year column here. And so what we end
up with in memory is in the symbol table, we get a name that has
years. And this name years is associated with sequence, a sequence of
numbers in this case. And these numbers are all the numbers, all the
years that appear in this year column in our dataframe. Sometimes
what we really are interested in is just a single value in a
particular column. So we're ultimately not interested in the whole
column, but we want just one value from this, from this column, and
that is what this example shows. So here we are getting the column in
line number 3. We're getting the column from the emissions_data
dataframe. We're getting the column CO2 that has the header CO2. So
here's our dataframe column CO2, that gives us a sequence of numbers.
And so in our symbol table, we get the name co2_emissions associated
with a sequence that in this case might be something like 301000,
298000, and then so on. Now, if we want just an individual item from
that, that, that sequence, we can extract individual items. So for

example, here we are saying get_item. This function also needs two
pieces of information, right? So we need to know which sequence is it
that we accessing and then we need to say which item in the sequence
do we want? So here we're saying access the sequence associated with
the name co2_emissions. And from that sequence, co2_emissions get
item number 2. So memory, Here's the name co2_emissions rate is
associated with this sequence here, we want item number 2. So if
301000 is item number 1, item number 2 would be 298000 And so the
function get_item turns the value298000 And then the rest of line
number 4 this first part here of line number 4. makes sure that in
our symbol table, the name co2_us_2001 is added, and this name is
associated with a value 298000 In the three examples that we've seen
so far, the program accessed columns from a data frame, but we can
also do the same thing with rows. So in this example here, we're
interested in the first row in the dataframe with a name
emissions_data. Right? So we are using, instead of using the
function named get_column_by_number, we're using get_row_by_number
here. But as before, as with a column, there's two pieces of
information we have to provide. We have to say which dataframe are we
looking at and which number row do we want here? We want row number 1.
And then it's, the rest looks very similar to what we saw with the
column. So the information that is in that first row, right? It's a
sequence of values. So in this particular case and this dataframe,
one row consists of four items, one string, and then 4 numbers. And
so the values, the sequence of values that represent the first row is
then associated in the symbol table with the name us_2000 in this
program. If we are interested, not in the whole row, but again just
in one item from that row, one cell. We can do the same thing as we
did with, with, with columns, right? So we first get the whole row.
And then we can say, okay, from that row, we use the function get_item
just as before, right? Because a row is a sequence that all the
values from that row I've represented as a sequence, just as the
values from a column are represented as a sequence. So we use this
function get_item to say from that sequence, us_2000, that it
represents the first row of the emissions data from that sequence.
Retrieve item number three. So in this case, this is item, USA is
item number 1. 2000 is item number two, and then 301000 is item
number three. And what this little program snippet does is that it
associates the value 301000 with the name co2_us_2000. Finally, if we
know both the row and the column number of the value that we're
interested in, we can directly access a single cell in the dataframe.
Here in this example, we're using the function get_cell and this
function needs three pieces of information. We need to specify which
dataframe is it that we are interacting with. And then we have to

specify both the row number and the column number. So here we are
interested in the value that is in row number 1 and cell number three.
So in this example, what that would mean row number one is this row
cell number 3 is 1, 2, 3 is in the CO2 column. It's the value 301000
So we would end up with a symbol table that in addition to the
filename and the emissions_data, has one additional name, which is
co2_us_2000 And the value associated with that name is the number
301000, which is in the third column, first row. Okay, up to now the
examples all involved accessing values in a data frame. They did not
change a dataframe. Now let's look at a couple of examples where the
program modifies the dataframe. We use the same starting point as
before. The dataframe from the spreadsheet emissions.csv has been
read in and is represented in memory as a dataframe in the form of a
dataframe as shown on the slide. Now, we call this function set_cell,
which the purpose of this function is to modify one cell in the data
frame. This function requires four pieces of information we have to
specify. The dataframe that we want to modify, we have to specify
which cell you want to modify. We can do that by specifying row
number and column number. So here we are saying row number 1, column
number 3 is what we want to modify. And then as the fourth piece of
information, we have to say what's the new value that should go into
this spot? And when we do that, you can see that row number 1, column
number 3, the value changes to this new value, right? So if I go
back, you can see this is the value that was in there before, 301000.
After this function set cell is executed, the value in that's what is
now 303000 right? Before, after the change. At this point, it's
important to remember that the spreadsheet from which the dataframe
was originally created, does not change when we make a change to the
dataframe, right on the hard disk in the spreadsheet, the value is
still 301000, but in-memory in the dataframe, the corresponding cell
has been changed. So the final example here, oh here, here's the
picture to go with this. So on the hard disk, the spreadsheet has not
changed. It's still 301000 in-memory. In the dataframe, the value
has changed to 303000. So in this final example, we're adding a whole
row to a dataframe. So line number 3 here specifies a row and new
entry. I made a new row for our dataframe, Rows in this dataframe are
four items long. So this sequence here has four items in it for
values. And we add and then call the function add_row to add that row
to the dataframe. So this function requires just two pieces of
information. We have to say which dataframe we want to add this row
to And then we have to say, what is the row that we want to add what
is the sequence of values we want to add. And when we do that, again,
you can see how the dataframe in memory changes. This is what it
looks like before. After we have called add_row there's now an

additional row at the bottom that has the new the new values in it.
And as before though, on the hard disk, the spreadsheet is not
changing. Just the dataframe in memory is changing. If you did want
to save this new version of the dataframe in a spreadsheet file on the
hard disk so that you could work with it later on, you would have to
explicitly tell your program, but that's what you want to do. You
would have to call another function that takes as a dataframe and
saves that dataframe to the hard disk. So this would kind of be a
function that is the sort of the flip side to the read_spreadsheet
function, right? So instead of reading a spreadsheet from the file,
we would need a function, write_spreadsheet or so that would take a
dataframe and write it to a spreadsheet file. So that is if you
wanted to keep the modifications that you made to the dataframe for
later, for later processing.

Conditional selection of rows from dataframe
In a previous video, you have seen how a program that wants to process
some data that's saved in a spreadsheet on the hard disk first needs
to read that data into memory, and in memory, then, this data is
represented as a dataframe. So for example, given this little two
line program here that reads in some data, we would end up with the
symbol table that has two names in it, filename and emissions_data.
And emissions_data would be associated with this dataframe that is
created from the data that is saved in the spreadsheet. In another
video, you've then seen how to access the data in the dataframe. And
in particular, you have seen how we can retrieve a single row from the
dataframe by asking for, for example, row number 7. So, you know,
asking for a particular number row. In this video we are going to
look at another way of selecting certain rows from the dataframe. In
this case, we're not just selecting a single row. But what we're
doing in this video is that we're going to look at how to select a
whole subset of rows that satisfy some condition. So for example,
let's assume we are working with our emissions_data, which has
emissions for different countries for many different years. And we
want to drill down and we want to further analyze the emissions of the
US over time. So really from our, from all the data that's in our
dataframe, the only rows of the dataframe that we're interested in for
this particular analysis are the rows which have USA as the country
name, right? So we would be interested in this first row here, but
then the next row has China as the country name. So for the
particular analysis where we're looking just at the US emissions, we
are not interested in that row. Then this last row that's shown here,

we would be interested in that again. So here is how we might do that
in, in a program. So if you look at the three lines of code here, the
first two lines are the same as before, and then we have this third
line of code here, which looks quite involved. So let's break this
down a little bit. So what we have is we're calling a function called
get_rows_by_condition. The function has two arguments. The first
one, emissions_data, so with that first piece of information that
we're providing to this function, is just which dataframe we are
trying to access. And then the second parameter that we are giving
here is this, this more complicated expression. And that's what we're
going to look at now in a bit more detail. So you can see that as
part of this expression we have a function call that you've seen
before get_column. So that also showed up in the video that talked
about how to access data in a dataframe. And so what do you know from
that video is that what this function does is it retrieves a single
column from the data frame. In order to be able to do it, what we
have to do is we have to specify which dataframe we're accessing, in
this case, emissions_data. And we have to specify what name, what the
name is of the column that we're interested in. So in this case we're
interested in the country column. And so what that gives us then is a
sequence of strings. where each string represents a country name. So
that sequence of strings might look something like this. We have USA,
then we have China. You know, some other things. USA appears again,
some other things. So it's a sequence of country names. Now, the
second part of this expression is == and then string USA. So this ==
operator is an operator to tell the computer to check for equality.
So what we're trying to say here -- is this first part, so what ever
is the result of this function call, is that equal to the string USA?
Now, we just, we just talked about how the first part or the result of
this function call is a sequence of strings. So if we were to take
this literally and we'd say, well is this sequence of country names
that comes back from, from this function call, is that equal to the
single string USA? The answer would of course be no, because one is a
sequence of strings and the other one is just a single string. Most
programming languages though that deal with data, are made for dealing
with data, they're smart enough to understand that if I have a
sequence of strings and I'm asking, is this == so is this equal to a
single string? What I'm really asking for is. What I'm really asking
for is a comparison where we are comparing every individual item in
the sequence to the string USA. So in this case, what that means is
we are going through our sequence of country names taken from the
column, the country column. And we check whether they are equal to
the string USA. So we have USA, is that equal to USA? Yes, that's
true. China. Is that equal to USA? No, that's false, right? We

do. And then we do the same thing for all the other entries in our
country column. So for each one of these entries we get true or
false. Now, we can combine that with our or we can apply this
condition to our dataframe emissions_data in the following way by
basically saying, okay, now we have these true and false values we
have as many true and false values as there are columns. Not sorry,
yes, they are rows in this dataframe because essentially what we did
is we went through the country column and for every entry in the
country column, we said, is this equal to USA true? Is this equal to
USA false, right? And so now what this function get_rows_by_condition
does is that it goes through and it just selects, it retrieves all the
rows for which we said that this comparison here equals true, right?
So USA is equal to USA. So the condition is true, which means this
row would be selected. The next row. China does not equal USA. So
the condition is false. This row would not be selected, and so on.
So what that would give us is another dataframe, a new dataframe. But
this new dataframe only contains a subset of the data in the original
dataframe. Specifically in this case, it contains all the rows where
the country name is USA. And then with that new smaller dataframe, we
can then do our analysis of emissions in the US. So what we get in
memory in the end, it looks like this. We have a symbol table. In
the symbol table we have three names, finally, emissions_data, and
us_emissions. emissions_data is associated with a reference to a
dataframe which contains all of the data from the original
spreadsheet. And us_emissions is associated with a reference to
another dataframe. And that dataframe contains only those rows where
the country name is USA. Now, here is another example. For this
example, let's assume that we want to look at the recent developments
in greenhouse gas emissions. So we can again use this function,
get_rows_by_condition to extract out the rows that we're interested
in. And let's assume by recent emissions we mean everything since
2010. So we want to ignore, or for this particular analysis, we want
to ignore a greenhouse gas emissions that happened before 2010. And
we only want to look at the emissions since 2010. So the condition
that we are writing here, instead of looking at the, the column, the
country column, because which we did the last time when we selected
based on country names, this time of course, we have to look at a
different column. And the column we're looking at is the year column
because we want to select based on the year in which the emissions
happened. So then the second part of this condition expression here,
we are saying that we want emissions. We want rows where the year,
the number in this year column is greater or equal to 2010. So if we
were interested in only in the emissions of exactly the year 2010, we
would use our == operator here again to get only those rows where the

year in that country column is exactly equal to 2010. But we are
interested in all emissions since 2010. So we are interested in all
rows where the year in the country column is equal to 2010 or greater
than 2010. And this operator here, >= does that for us. So in this
case, what we would end up with then is a symbol table in which again
we have three names, filename and emissions_data are just as before.
And then the last name emissions_since_2010, which was introduced by
this third row in our program here, would be associated with a
reference to an dataframe, new dataframe. And this dataframe would
contain all the rows from the original dataframe, where the number in
the year column is equal to 2010 or greater than 2010. And so this is
how you can extract a set, a subset of rows from a dataframe to create
a new smaller dataframe if what you want to do is a targeted analysis
that looks at just a subset of the rows in your data frame.

	Basic Computing Actions
	Assignments and Naming
	Basic Control Flow
	Assignments - Examples in Python
	Assignments - Examples in R
	Basic Types & Operations - Python
	Introduction to Functions
	Calling Built-in Functions
	Calling Functions in Python
	Calling Functions in R
	Defining your own functions - Python
	Defining your own functions - R
	Memory Models for Sequences
	Memory Models for Dataframes
	Working with Dataframes
	Conditional selection of rows from dataframe

