Upsert table primary key TTL support

Note: it's recommended to read the full upsert design doc to understand overall upsert
requirements and design

This document is shared externally

Status: WIP

Authors

e Qiaochu Liu giaochu@uber.com
Approvers

e Yupeng Fu yupeng@uber.com (Approved)

e Jackie Jiang jackie jxt@gmail.com

e Ujwala Tulshigiri ujiwala@uber.com (Approved)

e Ting Chen tingchen@uber.com (Approved)

Motivation

Apache Pinot provides native support of Upsert since v0.6.0, it allows users to modify existing records, and
successfully onboard many use cases. However, some challenges and feature gaps were identified during
customer onboarding.

One issue we observed in Pinot upsert cluster is high usage of heap memory. This is because the upsert
metadata, reflecting mapping from primary keys to record locations, is stored in heap of each host. For use
cases with high cardinality of primary keys, the heap usage of these upsert tables usually becomes the
bottleneck of the hardware resource.

For example, one common use case for Pinot upsert is dedup use cases, it has a large nhumber of unique
combinations of primary keys. It's hard to store large amounts of primary keys in memory. Another example
can be, in an upsert table, records with specific primary keys will get updates frequently during a time
window, and after the time window, these records won’t get updated any more. For example, an Uber trip
state might get updated when it is assigned, picked up, and dropped off. And the state will never be
updated once the trip is completed.

In these use cases, each primary key has a lifecycle and will be deactivated after the time window.
Currently these primary keys won’t expire until the retention days. We shall introduce TTL (time-to-live) for

Pinot primary keys. Primary keys will expire after the TTL, and we can remove inactive keys from upsert
metadata to save heap space.

Background

Pinot upsert revisit

The pinot upsert architecture is shown in the diagram below. For an upsert use case, the source kafka topic
needs to be pre-partitioned by primary keys, so the records with the same primary key can be distributed

https://docs.google.com/document/d/1vSTaKOSZILY4q_nkBn5YZDqx_tNGZrn9qiu7tPTUsxw/edit#
mailto:qiaochu@uber.com
mailto:yupeng@uber.com
mailto:jackie.jxt@gmail.com
mailto:ujwala@uber.com
mailto:tingchen@uber.com

to the same partition. Upsert happens in the local key coordinator, updating valid records with the same
primary keys.

§g kafka

Pinot Server

A
RTSegmentDM } UpsertkKeyCoordinator

|
|
Y I
¥
segments
UpsertMetadata

InvalidDocFilter

Query Executor

Broker

Pinot upsert architecture has the following major components:

PartitionUpsertMetadataManager, also known as local key coordinator, manages the upsert/insert
in each partition. PartitionUpsertMetadataManager maintains the upsert metadata for each
partition, including primary key to record location.

PrimaryKeylndexes, also known as upsertMetadata, is the mapping from primary keys to record
location. RecordLocation contains information about segment_id, doc_id, and comparison column
values. When a message with existing primary key values comes, we update the record location of
this primary key if the new record has a higher comparison column value.

ValidDoclIndexes, also known as SkipDocFilter, is a filter bitmap that contains valid records in a
segment. When a message with existing primary key values comes, we use the comparison
column value to decide whether it’s a valid record or not. When processing queries, Pinot servers
skip invalid records by filtering by validDocIndexes.

Partial upsert revisit

Partial upsert is built on top of pinot full upsert. During ingestion, the partial upsert handler processes the
incoming message, handles merge and derives the full update for the row in the mutable segment. The
pinot partial upsert architecture is shown in the diagram below.

GaaltimeTableDataManageD

processStreamEvent
(decode, transform, index)

@

\

) ® lookupPreviousRecord

@
mutableSegments M(partialUpsertHandler }

@ y mergePartialRecord

T ® addRow (e)

@onUpsertMetadataManager @ updateRecord

=| upsertMetadata

Besides components in full upsert architecture, partial upsert has two special components..

e PartialUpsertHandler is a local handler that identifies the partial upsert merge strategies for each
field to initialize a list of mergers, looks up the last derived full update record, and handles merges.

e Mergers handle the merge of the previous full record and the new consumed record with different
strategies, including updates, ignore, increment, append strategies, etc.

Challenges

During onboarding upsert use cases, we observed few challenges and scenarios that can be optimized.

High memory usage of Upsert metadata

A common upsert use case is live sessions. There are scenarios that users need to update records with
specific primary keys frequently during a time window, and after the time window, these records won'’t get
updated any more. For example, an Uber trip state might get updated when it is assigned, picked up, and
dropped off. And the state will never be updated once the trip is completed. Currently these use cases rely
on Flink Sessions to maintain the time windows for active primary keys. Each primary key has a lifecycle
and will be deactivated after the time window.

We store upsert metadata(PrimaryKeylndexes) in the heap, which is a map data structure to look up
recordLocation by PrimaryKeys. The heap usage of these upsert tables usually becomes the bottleneck of
the hardware resource. Early this year, we introduced a tool to estimate heap usage for Pinot upsert tables.
There are some other efforts to reduce heap usage and avoid out-of-memory issues.

e Primary keys size compression, primary keys can be stored as hash values and compressed.
e Cardinality reduction, cardinality is the number of unique records of primary keys stored in heap.

Slow segment rebuilt for upsert tables

During segment reload, or server restart, in-memory states will be lost, and segments need to be rebuilt.

https://github.com/apache/pinot/pull/7246

We observed that server reload and restart for upsert tables took significantly longer time than non-upsert
tables.

Architecture

Based on the problems identified, below are some upsert optimizations.

TTL support for primary keys

Currently for upsert tables, the primary key values within retention will be stored in memory. Because of
this pattern, we cannot support upsert tables that have long retention days. For use cases where primary
keys will be alive for short periods of time, we shall introduce TTL(time-to-live) for Pinot primary keys. For
TTL-enabled use cases, the primaryKeylndexes only contain primary entries within TTL. Primary keys will
expire after the TTL, and we can remove them from the heap to save heap space. When reloading or
restarting the servers, the validDocldsSnapshots will be used to rebuild segments.

There are two limitations of TTL support,

e TTL should be longer than consuming segment sealing time.
e TTL is not compatible with upsert data correction backfill.

With the TTL introduced, now the data stored in the pinot upsert table can be splitted into “stable” and
“alive”. It can be illustrated in the following figures.

Stable Alive

segmentl | segment2 | segment3 | segment4 | segment5 | segment6 | segment7 | segment8 |consuming,

We can discuss the behavior for consuming new messages and reloading the existing segments.

Consuming behavior with TTL
There are two types metadata we need to maintain for Pinot upsert,

e Primary key Indexes per partition (PKI)
e Valid Docs Indexes per segment

When a new message comes, Pinot will try to lookup the primary key in PKI to find out the location of the
previous valid record if it exists. It can be described by the following code.

def ingestionWithUpdate(PrimaryKeyIndex upsertMetadata):

while msg := kafkaConsumer.poll() and msg.time > currentTime - ttl do:
if msg.primaryKey in upsertMetadata then:
if msg.time > upsertMetadata.get(msg.primaryKey).time then:
upsertMetadata.remove(msg.primaryKey)
upsertMetadata.put(msg.primaryKey, IndexTuple(segmentName,docId,msg.time))
else:
upsertMetadata.put(msg.primaryKey, IndexTuple(segmentName,docId,msg.time))

With TTL support, the consuming behavior can be categorized into the following 3 scenarios.

Since we cannot always guarantee all the out-of-TTL primary keys can be removed from primary key
indexes immediately. We might have the following three scenarios.

Behavior (current message is incoming)
Scenariol. e The previous record won’t be stored in the primary key indexes.
e The previous doc is valid for the stable segment.
Previous record e The incoming message will be added in the primaryKey indexes.
is out of TTL, e The new doc will be valid for the new segments.
and removed e The previous doc won’t be invalidated.
from PK indexes e When querying the table, we will get two records.
e We don’t need to periodically update validDoclds snapshot
Scenario2. e The previous record is stored in the primary key indexes.
e The previous doc is valid for the alive segments.
Previous record e The incoming message will update the primaryKey indexes.
isin TTL, e The previous doc will be invalid for the alive segments.
haven’t been e The new doc will be valid for the new segments.
removed from e When querying the table, we will get one record.
PK indexes e We need to periodically update validDoclds snapshot
Scenario3. e The previous record is stored in the primary key indexes.
e The previous doc is valid for the stable segments.
The old event e The incoming message will be added in the primaryKey indexes.
is out of TTL e The new doc will be valid for the new segments.
but still in the e The previous doc can be invalidated but we shouldn’t do that.
primary key e Additional check: when inserting a new record, even the pk can be found in
indexes PK indexes but out-of-TTL, we should treat it as a new record.
(we need all-replica to have the same behavior, otherwise the server might
crash).
When querying the table, we will get two records.
We don’t need to periodically update validDoclds snapshot

The scenarios 1 and scenarios 2 can be explained in the following figure.

Ts and new segment Pk1 valid Pk2 valid pk3 valid Pk4 valid PK5 valid
location location location location location
TO, SO (pk1, pk2, pk3) | sO sO sO - -
T1, S1(pk2, pk4) sO s1 sO s1 -
T2, S2 (pkb) sO s1 sO s1 s2
T3, S3 (pk4) sO s1 sO s1,s3 s2
| pimery key indexes | | valid docs indexes |
t0 % pk1, pk2, pk3 % s0 % i s0 --> pk1, pk2, pk3 i cgggrunn;irz‘l‘g
a | sasapama | o | st
1 1 i o | s0 --> pki, pk3 i
2 I pk2, pké, pks I] ! 1 > ! stable
N OOERE-
i i :ﬁ””j i 0 > pki, pk3 i
3 } pkd, pk5 } s1 s2 | s3 |] sl > pk2, pkd4 :
i I 1 i 1 s2 --> pks i
e J ' O J
retetion = 90 TIC=2
As we can see from the above result, we will get 2 records for pk4.
For scenario3, we can explain it with the following figures.
Ts and new segment Pk1 valid Pk2 valid pk3 valid Pk4 valid PK5 valid
location location location location location
TO, SO (pk1, pk2, pk3) | sO sO sO - -
T1, S1(pk2, pk4) sO s1 sO s1 -
T2,S2 (pk5) sO s1 sO s1 s2
T3, S3 (pk4) sO s1 sO s%4-s3 s2

[

| 1 |r I
| 1 1 1
| i | i
i i | i] ! cpnsumirg
t0 I pkl, pk2, pk3 | | s0 | | SO-->pkl, pk2,pk3 | segment
| i LooJ i i G
1 I ' | I
I I ' I I
ree I = | I
| : | : |
I 1 — v ~~ "N] I
t | Pkl pk2, pk3 pk4 | s0 | si | i S0 > pick, pict i sealed
i i : } i s1-->pk2, pk4 i segmen
: : S S : |
N R - B —— N R
I I H] I
I I H I I
| : | : |
| | TN | --> pkl, pk3 I
pki, pk2, pk3, pk4, | i s0 --> pk1, p stabl
& k5 i O | sl | s2 ! | sl->pk2, pkd | . m:.
! i L] 2 > pk5 i °
I I
. . i i
| : | : |
! i 7] s0 > pk1, pk3 } still in
3| pk2, pk4, pks] sl s2 | s3 |] sl --> pk2, pké } primarykey
1 ! I I 1 s2 --> pkS | indexe
| i o | 53 --> pké i
| : | : |
b oo J L J
. .

retetion = 90 i TIL=2

The above cases show when the out-of-TTL primary key hasn't been removed from primary key indexes.
They can still be looked up and invalidated in the previous segments. E.g. When querying pk4, we will only
get 1 record.

However this might cause servers to crash. We should guarantee that all replicas have the same behavior,
and keep the pattern consistent by adding the following additional check: when inserting a new record,
even the pk can be found in PK indexes but out-of-TTL, we should treat it as a new record. When adding
this rule, the scenario3 will become the same as scenario 1and 2.

Note that valid doc indexes are inferred from primary keys indexes. With TTL support, the primary key
indexes containing partial primary keys won'’t be sufficient. We will need to keep validDocldsSnapshot for
segments out of TTL. Their primary keys are not stored in the primary key indexes anymore and
validDoclndexes cannot be inferred based on primaryKeylndexes.

ValidDoclIndexes Snapshots

We shall introduce validDocldsSnapshot to recover in-memory metadata quickly. When sealing a segment,
validDocldsSnapshot will be saved periodically. When segment reloads, the sealed segments will use the
validDocldsSnapshot to recover the ValidDoclndexs instead of inferred from the primaryKeylndexes.

It's very common that the process can be restarted in the Pinot servers. The in-memory upsert metadata,
primaryKeylndexes and validDoclndexes, will be lost and need to be rebuilt. However, after ttl enabled on
primary keys, we only kept active primary keys within TTL in the upsert metadata, and we lost the records
location of inactive primary keys.

The solution for this problem is to make validDocld snapshots for out of retention TTL segments. The
snapshot is stored as roaringBitmap, can be maintained per segment, and when loading the segment
again, only try to add the records that are valid to the metadata map. Two challenges for persisting
validDocldsSnapshot are as follows,

e When to persist the snapshot to avoid inconsistent results.

e Where to persist the snapshot so that we are able to access the snapshot.

Implementation

ValidDoclds Snapshot for recovering in-memory states
A solution for recovering metadata is to make validDocld snapshots for out of retention TTL segments. The
snapshot is stored as roaringBitmap, can be maintained per segment, and when loading the segment

again, only try to add the records that are valid to the metadata map.

The validDoclds recovery process is shown below.

When to persist snapshot

We listed all the scenarios that validDoclndexes might change. E.g. Persisting snapshots during segment
replacement might cause inconsistency validDoclndexes, and it was addressed by this OS commit.

When to persist snapshots are shown as follows.

snapshot enabled disabled

Load validDoclds from snapshot | Delete snapshot

Add segment

Replace segment - -

offload Persist snapshot -

During segment replacement, it shouldn’t use the old segment’s snapshot to recover validDoclds for the
new segment. This is because the new segment doesn't necessarily have the same docs as the old
segment. Even for consuming segments, we might re-order the docs.

The below figure shows which segments we need to update validDoclndexes.

In PrimaryKeylndexes validDoclndexes timeRetentions Need update
(can recover from can change snapshot
primaryKeylndexes)

Sealed Segments | yes yes ttl yes

in TTL

It should be yes yes Ttl + x yes

removed - but it’s

still in TTL

Stable segments. no no Retention - ttl no

Not in pk indexes.

https://docs.google.com/document/d/1guYCag3VoE2148oAj8v1k714qmuhrKI1Z1HNJt2BLqQ/edit#
https://github.com/apache/pinot/commit/91289be930754dee74776e804ce388d005b06e3b

Where to persist snapshot

Option1. store it in a hdfs url, maintain extra metadata

The current snapshots are persisted in the local host. And it might be lost during the server replacement.
We planned to add the snapshot in deepstore and add the snapshot hdfs url in the segment metadata

"segment.crc": "-1",

"segment.creation.time": "1658278014231",

"segment.end.time": "-1",

"segment.flush.threshold.size": "2500000",
"segment.flush.threshold.time": null,

"segment.index.version": null,

"segment.name": "rta_ads_metrics_events__0__0__20220720T0046Z",
"segment.realtime.download.url": null,
"segment.upsert.snapshot.download.url": “hdfs:///upinot/etc/segment_timestamp_00000,
"Segment.upsert.snapshot.last modifid.time": "1658278014231",
"segment.realtime.endOffset": null,

"segment.realtime.numReplicas": "2",

"segment.realtime.startOffset": "37967961",

"segment.realtime.status": "IN_PROGRESS",

"segment.start.time™: "-1",

"segment.table.name": "rta_ads_metrics_events",

"segment.time.unit": "null",

"segment.total.docs": "-1",

"segment.type": "REALTIME"

Option2 Store validDoclds in the segment tarball

We can also store the validDoclds in the tarball using the SegmentCreator

However, validDoclds won't be available when creating the segment. We can only pull it from the server
when the segment is loaded.

Pros and cons

pros cons
Store separate hdfs url Lightweight (snapshot in bitmap (1) Have to manage a different
format is smaller than tarball) HDFS dir, hard to manage

(2) Enabling/disabling the snapshot
on the fly will not be easy.

(3) Sometimes HDFS urls can be
lost.

Store snapshot in the tarball | Easy to manage Might be expensive to tar and
upload

Pruning out-of-TTL primary keys

When removing expired entries from upsert metadata, the expired keys should be removed from primary
key indexes. There are two approaches.

Remove synchronously

Everytime when committing a new segment, we can check the out-of-TTL primary keys and remove them
from primary key indexes. It can be described in the following figure.

Remove asynchronously

Full table scan. The upsert metadata gets pruned periodically by scanning the map, and comparing the
timestamp of recordLocation with the current timestamp.

def pruneMetadata():
for primaryKey, recordLocation in upsertMetadata:
if recordLocation.ts < currentTs - ttl:
upsertMetadata.remove(primaryKey)

Two maps rotation. We can use two maps to store TTL2 upsert metadata to reduce the scan time. One
map stores records with timestamp [currentTS - 2*ttl, currentTS - ttl], while the other map stores records
with timestamp [currentTS - ttl, currentTS].

When pruning records, we can fully remove all records in the map maintained earlier records, then swap
two maps.

def ingest(primaryKey, recordLocation):
if recordLocation.ts > currentTs - ttl:

if primaryKey in upsertMetadata0Old:
upsertMetadataOld.remove(primaryKey)
upsertMetadataNew.put(primaryKey, recordLocation)

elif primaryKey in upsertMetadataNew:
if recordLocation.ts > upsertMetadataNew.get(primaryKey).getTs():

upsertMetadataNew.put(primaryKey, recordLocation)

else:

upsertMetadataNew.put(primaryKey, recordLocation)

def pruneMetadata():
upsertMetadataOld.clear()
swap (upsertMetadataOld, upsertMetadataNew)

Recovering PrimaryKeylndexes

For sealed segments, we rebuild the PrimaryKeylndex by scanning the Docld, PK and TS of all the sealed
segments. With these type columns, we are able to fully reconstruct the PrimaryKeylndex map.

def ingestionWithUpdate(PrimaryKeyIndex upsertMetadata):

while msg := kafkaConsumer.poll() and msg.time > currentTime - ttl do:
if msg.primaryKey in upsertMetadata then:

if msg.time > upsertMetadata.get(msg.primaryKey).time then:
upsertMetadata.remove(msg.primaryKey)
upsertMetadata.put(msg.primaryKey, IndexTuple(segmentName,docId,msg.time))
else:
upsertMetadata.put(msg.primaryKey, IndexTuple(segmentName,docId,msg.time))

Recovering ValidDoclndexes

The original approach to recover validDocIndex is inferred from primaryKeylndexes. However, for
TTL-enabled use cases, the primaryKeylndexes only contain primary entries within TTL. One approach is to
recover the full primaryKeylndexes, but it will be expensive and time consuming. To solve this requirement,
we proposed validDocldsSnapshot to recover validDoclndexes. When sealing a segment,
validDocldsSnapshot will be saved periodically. When segment reloads, the sealed segments will use the
validDocldsSnapshot to recover the ValidDoclndexs instead of inferred from the primaryKeylndexes.

def reloadWithoutTTL(segment, records, primaryKeyIndexes):
for record in records:
recordLocation = primaryKeyIndexes.get(record.primaryKey)

if recordLocation != null:
existing record, same segment
if segment == recordLocation.getSegment():

if compareTime > 0:
segment.validDocId.replace(record)
existing record, same segment being removed
elif segmentName == currentSegmentName:
if compareTime > 0:
segment.validDocId.add(record)
existing record, different segment
else:
if compareTime > O:
segment.validDocId.add(record)
new record
else:
validDocId.add(record)

def reloadWithTTL(segment, records, validIdSnapshots):
segment.validDocId = validIdSnapshot

When replacing the old snapshot, we replicate the old snapshot, generate a new snapshot then replace
the old snapshot to avoid data loss.

TTL config in upsertConfig

"upsertConfig": {

"mode": "FULL",
"TtIUnit": "DAYS",
"TtIValue": "1",

"isSkipLateEvents": true

Sometimes users cannot guarantee the order of the message, so we use isSkipLateEvent to define the
behavior whether or not to process events that have already passed TTL.

Limitations

TTLs with data bootstrap backfill

Upsert table backfill support was released in 2022 H1, this feature can be used for first time backfill for long
retention tables, which improves slow backfill from Kafka due to the throughput limit. For some use cases,
TTL support and bootstrap are both required.

However, we assume each primary key is only active for a short period of time, and it will be removed from
upsert metadata after TTL. With backfill for upsert tables, inactive primary keys will be consumed again and
might cause duplicate records.

Bootstrap backfill requires to disabled TTL and restart servers.

TTLs with data correction backfill

Another common use case of backfill is data correction backfill. It enabled users to backfill data for a given
period of table, mostly to fix potential data corruption or missing data.

To avoid duplicate data while running the fixed time backfill, we need to recover the upsert data structure
by scanning all historical data. When recovering the historical data, the upsert metadata will be increased
significantly. Since capacity estimation might be based on the primary keys TTL, recovering the historical
upsert metadata might cause server crashes. An approach to solve the problem is scaling up the cluster
and disable TTL during backfill, the steps are as follows.

Disable TTL.
Add more machines in the cluster to avoid server crash by recovering historical upsert metadata.
Rebalance the table.

e Start backfill, scan all data to recover historical metadata.

e Once backfill finished, enable ttl and prune old metadata.

e Return hosts from the tenant and rebalance.

However this approach has the following constraints.

e Scanning all historical data to recover upsert metadata will be slow.
e When expanding the cluster and rebalancing the table, snapshots stored on local segments will
be lost.

Reference

Pinot upsert revisit Design

Pinot partial upsert Design

Pinot upsert optimization discussion

When to persist snapshot discussion B when to persist snapshot

https://docs.google.com/document/d/1guYCag3VoE2148oAj8v1k714qmuhrKI1Z1HNJt2BLqQ/edit#
https://docs.google.com/document/d/1xkTFLOs_5h3ZGCyl1h48L6Y38LwMJbBhaL58kDGeuCw/edit
https://docs.google.com/document/d/1vSTaKOSZILY4q_nkBn5YZDqx_tNGZrn9qiu7tPTUsxw/edit#heading=h.86hrbgad3a8f
https://docs.google.com/document/d/1qrTD7x23FlPrAUVIFbWs6GSBtTsztWhWgis-xr1lGMs/edit#
https://docs.google.com/document/d/1rx8kcLnGQNxb5ENScE1KVVy9O_Qt14nS6-5pGxyqDng/edit#bookmark=id.3na875lhifiq

	Upsert table primary key TTL support
	Authors
	Approvers
	Motivation
	Background
	Pinot upsert revisit
	Partial upsert revisit

	Challenges
	High memory usage of Upsert metadata
	Slow segment rebuilt for upsert tables

	Architecture
	TTL support for primary keys
	
	Consuming behavior with TTL
	ValidDocIndexes Snapshots

	Implementation
	ValidDocIds Snapshot for recovering in-memory states
	When to persist snapshot
	Where to persist snapshot
	Option1. store it in a hdfs url, maintain extra metadata
	Option2 Store validDocIds in the segment tarball
	Pros and cons

	Pruning out-of-TTL primary keys
	Remove synchronously
	Remove asynchronously

	Recovering PrimaryKeyIndexes
	Recovering ValidDocIndexes
	TTL config in upsertConfig

	Limitations
	TTLs with data bootstrap backfill
	TTLs with data correction backfill

	Reference

