Testing on the Toilet Presents... ﬂea[tﬁy Cocfe on the Commoc[e

Google
Write Clean Code to Reduce Cognitive Load @

5 by Andrew Trenk
Tests rock.

Do you ever read code and find it hard to understand? You may be experiencing cognitive load!

Cognitive load refers to the amount of mental effort required to complete a task. When reading code,
you have to keep in mind information such as values of variables, conditional logic, loop indices, data
structure state, and interface contracts. Cognitive load increases as code becomes more complex. People
can typically hold up to 57 separate pieces of information in their short-term memory (source); code that
involves more information than that can be difficult to understand.

Cognitive load is often higher for other

people reading code you wrote than it is for
yourself, since readers need to understand
your intentions. Think of the times you read
someone else’s code and struggled to
understand its behavior. One of the reasons
for code reviews is to allow reviewers to
check if the changes to the code cause too

much cognitive load.
Be kind to your co-workers: reduce their
cognitive load by writing clean code.

Complex code: Simple code:
Too much cognitive load Minimal cognitive load

The key to reducing cognitive load is to make code simpler so it can be understood more easily by
readers. This is the principle behind many code health practices. Here are some examples:

® Limit the amount of code in a function or file. Aim to keep the code concise enough that you can keep
the whole thing in your head at once. Prefer to keep functions small, and try to limit each class to a

single responsibility.

e (reate abstractions to hide implementation details. Abstractions such as functions and interfaces allow
you to deal with simpler concepts and hide complex details. However, remember that over-engineering
your code with too many abstractions also causes cognitive load.

o Simplify control flow. Functions with too many if statements or loops can be hard to understand since
it is difficult to keep the entire control flow in your head. Hide complex logic in helper functions, and
reduce nesting by using early returns to handle special cases.

e Minimize mutable state. Stateless code is simpler to understand. For example, avoid mutable class
fields when possible, and make types immutable.

® [nclude only relevant details in tests. A test can be hard to follow if it includes boilerplate test data that
is irrelevant to the test case, or relevant test data is hidden in helper functions.

e Dont overuse mocks in tests. Improper use of mocks can lead to tests that are cluttered with calls that
expose implementation details of the system under test.

Learn more about cognitive load in the book The Programmer s Brain, by Felienne Hermans.

More information and archives: testing.googleblog.com

G) @ Copyright Google LLC. Licensed under a Creative Commons
@ Attribution—ShareAlike 4.0 License (http://creati mmons.org/licen -sa/4.0/).



https://en.wikipedia.org/wiki/Cognitive_load
https://en.wikipedia.org/wiki/Working_memory#Capacity
https://google.github.io/eng-practices/review/reviewer/looking-for.html#complexity
https://google.github.io/eng-practices/review/reviewer/looking-for.html#complexity
https://martinfowler.com/bliki/FunctionLength.html
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://testing.googleblog.com/2023/10/simplify-your-control-flows.html
https://testing.googleblog.com/2017/06/code-health-reduce-nesting-reduce.html
https://en.wikipedia.org/wiki/Immutable_object
https://testing.googleblog.com/2023/10/include-only-relevant-details-in-tests.html
https://testing.googleblog.com/2013/05/testing-on-toilet-dont-overuse-mocks.html
https://www.manning.com/books/the-programmers-brain
http://testing.googleblog.com
http://creativecommons.org/licenses/by-sa/4.0/

