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More on Indivisibilities
Common formulations
Knapsack Problem

The knapsack problem, also known as the capital
budgeting or cargo loading problem, 1s a famous IP
formulation.

The knapsack context refers to a hiker selecting the most
valuable items to carry, subject to a weight or capacity
limit. Partial items are not allowed, thus choices are
depicted by zero-one variables.

The general problem formulation assuming only one of
each item is available is

Max > v X,
]
s.t. ZdJXJ < W
]
X, = 0Oor 1 forall]



More on Indivisibilities
Common formulations -- Knapsack Problem
Suppose an individual 1s preparing to move. Assume a
truck 1is available that can hold at most 250 cubic feet of
items. Suppose there are 10 items that can be taken and
that their names, volumes, and values are

Table 16.1. Items for the Knapsack Example

Item Volume Item Value

Variable Item Name (Cubic feet) (9)
X, Bed and mattress 70 17
X, TV set 10 5

X5 Turntable and records 20 22
X, Armchairs 20 12
X Air conditioner 15 25
X Garden tools and fencing 5 1

X5 Furniture 120 15
Xy Books 5 21
Xy Cooking utensils 20 5

X0 Appliances 20 20




More on Indivisibilities Common formulations --
Knapsack Problem

Max 17x, + 5x, + 22x; + 12x, + 25x5 + X, + 15x, + 2Ixg + 5x, + 20x,,
st.  70x, + 10x, + 20x; + 20x, + I5x; + 5x, + 120x, + 5xg + 20x, + 20x,, < 250

x, = 0 or 1, for all ]
obj=128
Variable Value Reduced Cost
X, 1 17
X, 1 5
X3 1 22
X4 1 12
X5 1 25
X 1 1
X 0 15
Xq 1 21
X 1 5
X10 1 20
Constraint Activity Shadow Price

Space 185 0




Handling Indivisibilities
Warehouse Location
McCarl and Spreen Chapter 16
Warehouse location problems involve the location of
warehouses within a transportation system so as to
minimize overall costs. The basic decision involves
tradeoffs between fixed warehouse construction costs and
transportation costs.
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point
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point
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point




More on Indivisibilities
Common formulations
Warehouse Location (warehous.gms)

Min ZFka + ZchXﬂ{ + ZZijij + ZZEijZij
k ik k i

s.t. ZXH{ + Zzij < S5 for all 1
k j
vy o+ > 7y = D for all j
k i
-3 Xy + > vy < 0 foralk
i J
~CAP,V, + >y, < 0 for all k
J
Amkvk
Z < b, for all m
k
V, =0orl, Xy, Yy Zy = 0 forally, 3, k

Merges Fixed Charge - Capacity and Transportation

Problem with transshipments. -- We consider moving
goods from supply 1 to demand j or from i to warehouse k
and then on to demand j.



Table 16.6. Formulation of the Warehouse Location Example Problem

Vi Vg Ve |Xia X Xie X X X |[Ya Yo Ym Ym Yo Yo |Zy Zy Zo Zz | ppg
50 60 68 |1 2 8 6 3 1 (4 6 3 4 5 3 4 8 7 6 |Min
1 1 1 1 | m 75
1 I 1 1 I (m 50
1 1 1 1 1 »A 50
1 1 1 1 I [~ 75

-1 -1 1 1 a0

-1 -1 | 1 m o0

-1 -1 1 1 a0

-9999 1 1 m 0
-60 | | |0

=70 1 1 m o0

1 1 1 |1
V., Vg o Ve e (0,1)
Xik Yy, Z; M 0




Table 16.7. Solution Results for the Warehouse Location Example Obj = 623

Variable Value Reduced Cost Equation Slack Shadow Price
Va 0 0 1 0 -3.00
Vg 0 2 2 0 0
Ve 1 0 3 0 7.00
Xia 0 0 4 0 5.00
Xis 0 2.00 5 0 -4
Xic 0 10.00 6 0 -3.00
Xoa 0 2 7 0 -1.00
Xo 0 0 8 0 -0.05
X 70 0 9 0 -1.00
Y Al 0 1.052 10 0 -1.00
Yo 0 5.052 11 0 -2
Yg 0 0
Yao 0 3.00
Yei 20 0
Yo 50 0
Z, 50 0
Z, 0 6.00
Zy 5 0

7y, 0 1.00




More on Indivisibilities
Common formulations

Warehouse Location In GAMS (warehous.gms)

BINARY VARIABLES
BUILD (WAREHOUSE) WAREHOUSE CONSTRUCTION VARIABLES
POSITIVE VARIABLES
SHIPSupWar (SUPPLYL, WAREHOUSE) AMOUNT SHIPPED TO WAREHOUSE
SHIPWarMkt (WAREHOUSE, MARKET) AMOUNT SHIPPED FROM WAREHOUSE

SHIPSupMkt (SUPPLYL, MARKET) AMOUNT SHIPPED DIRECT TO DEMAND;
VARIABLES
TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;
EQUATIONS
TCOSTEQ TOTAL COST ACCOUNTING EQUATION
SUPPLYEQ (SUPPLYL) LIMIT ON SUPPLY AVAILABLE AT A SUPPLY POINT
DEMANDEQ (MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET
BALANCE (WAREHOUSE) WAREHOUSE SUPPLY DEMAND BALANCE
CAPACITY (WAREHOUSE) WAREHOUSE CAPACITY
CONFIGURE ONLY ONE WAREHOUSE;
TCoSTEQ.. TCOST =E= SUM (WAREHOUSE,

DATAWar (WAREHOUSE, "COST") /DATAWar (WAREHOUSE, "LIFE") *BUILD (WAREHOUSE) )
+SUM ( (SUPPLYL, MARKET)
, SHIPSupMkt (SUPPLYL, MARKET) *COSTSupMkt (SUPPLYL, MARKET) )

+SUM ( (SUPPLYL, WAREHOUSE) , SHIPSupWar (SUPPLYL, WAREHOUSE) *COSTSupWar (SUPPLYL, WAREH
OUSE) )
+SUM ( (WAREHOUSE , MARKET) , SHIPWarMkt (WAREHOUSE, MARKET)
*COSTWarMkt (WAREHOUSE, MARKET) ) ;
SUPPLYEQ (SUPPLYL) . . SUM (MARKET, SHIPSupMkt (SUPPLYL, MARKET))
+ SUM(WAREHOUSE, SHIPSupWar (SUPPLYL, WAREHOUSE) )
=L= SUPPLY (SUPPLYL) ;
DEMANDEQ (MARKET) . . SUM (SUPPLYL, SHIPSupMkt (SUPPLYL, MARKET))
+ SUM(WAREHOUSE, SHIPWarMkt (WAREHOUSE, MARKET))
=G= DEMAND (MARKET) ;

BALANCE (WAREHOUSE) . . SUM (MARKET, SHIPWarMkt (WAREHOUSE, MARKET))

- SUM(SUPPLYL, SHIPSupWar (SUPPLYL, WAREHOUSE) ) =L= 0;
CAPACITY (WAREHOUSE) .. SUM(MARKET, SHIPWarMkt (WAREHOUSE, MARKET))

-BUILD (WAREHOUSE) *DATAWar (WAREHOUSE, "CAPACITY") =L= 0 ;

CONFIGURE. . SUM (WAREHOUSE, BUILD (WAREHOUSE) ) =L= 1;



More on Indivisibilities
Common formulations -- Decreasing Cost deccost.gms

The basic problem in matrix form is

Max eY - 1(Z)
st. Y - YG.X. < 0
SAX. - 7 < 0
SH_X_ < b, foralli
Y, X Z > 0
where

Z 1s the quantity of input used,
f(Z) total cost of Z and exhibits diminishing marginal
cost (per unit cost falls as more purchased);
¢ 1s the sale price for a unit of output (Y);
G,, 1s the quantity of output produced per unit of
production activity X,;;
A, 1s the amount of resource used per unit of X,; and
H. . is the number of units of the i fixed resource
which 1s used per unit of X,..
Objective function maximizes total revenue (eY) less total
costs (f(Z)). The first constraint balances products sold

(Y) with production (2 G, X,,). Second balances input



usage (2 A, X,,) with supply (Z). Third balances resource

usage (2 H;,,X,,) with exogenous supply (b;).



More on Indivisibilities
Common formulations -- Decreasing Cost deccost.gms

This problem may be reformulated as an IP problem by following an
approximation point approach.

MaxeY — Yf(Z)R stY — $GX <0 YAX -
k m m

The variables are Y and X,,, as above, but the Z variable has been
replaced with two sets of variables: R, and D,. The variables R
which are the number of units purchased at cost f'(Z,*); Z,* are a set
of approximation points for Z where Z,* = 0; where f '(Z,*) 1s the
first derivative of the {(Z) function evaluated at the approximation
point Z,". While simultaneously the data for D, is a zero-one
indicator variable indicating whether the k™ step has been fully used.



This problem may be reformulated as an IP problem by following an
approximation point approach.

Max eY - Zf'(ZIL) R,
k
st. Y - Y G.X, < 0
YAX, - > R, < 0
m k
ZHime < bi
R, - (Z,-Z. D, < 0
- Ry + -2, Dy, = 0
Y X R, > 0
D, = Oorl

The variables are Y and X,,, as above, but the Z variable has been
replaced with two sets of variables: R, and D,. The variables R
which are the number of units purchased at cost f'(Z,*); Z,* are a set
of approximation points for Z where Z,* = 0; where f'(Z,*) 1s the
first derivative of the f(Z) function evaluated at the approximation
point Z,". While simultaneously the data for D, is a zero-one
indicator variable indicating whether the k™ step has been fully used.



More on Indivisibilities
Common formulations -- Decreasing Cost deccost.gms

Max4Y — (3 —-.1252)Z Y — 2X <0 X — Z < 0 X

Suppose we approximate Z at 2, 4, 6, 8 and 10. The formulation
becomes

Max 4Y ~ 250R, - 200R, - 150R, — 1.00R, — 0.50R,

X - R, - R, - R, - R, - R,

R, ~2D,

- R, +2D,

- R, +2D,

IA A IA IA IA IA A IA IA TIA IAIA
o O O O O o O o O Wwnh o O



More on Indivisibilities
Common formulations -- Decreasing Cost deccost.gms

Table 16.11. Solution to the Decreasing Costs Example

Objective function = 29.50

Variable Value Reduced Cost Equation Slack Shadow Price
Y 10 0 Y balance 0 4.0
X 5 6.5 Z balance 0 1.5
R, 2 0 R,D, 0 0
R, 2 0 R,D, 0 0
R, 1 0 R;D; 1 0
R, 0 0 R,D, 0 0.5
R; 0 0 RsDs 0 1.0
D, 1 0 R,D, 0 1.0
D, 1 2 R,D; 0 0.5
D, 1 -1 R;D, 1 0
D, 0 1 R4D; 0 0
D; 0 2




More on Indivisibilities
Common formulations -- Decreasing Cost deccost.gms
Suppose cost of shipping decreases as volume shipped increases. A
formulation is

sets volumelevs /Low,Medium,High/
sets volterms /

Cost cost per unit shipped
MinimumQ minimum volume that must be shipped to get this rate
MaximumQ maximum volume that gets this rate/
table volumedata (volterms,volumelevs) data on cost and min shipping
Low Medium High
Cost 5 4 2.5
MinimumQ 0 10 100
MaximumQ 9 99 1000
scalar productioncost /3/
salesprice /4/
variable profit total objective function
binary variables volumeuse (volumelevs) volume level used
variables production level of production

amount (volumelevs) shipped at this volume level
sales amount sold

equations obj objective function
balanceprod product balance
balancesales balance of shipped products
minlimitship(volumelevs) lower limits on shipping
maxlimitship (volumelevs) upper limits on shipping

mutexclusiv can only use one volume level ;
obj.. productioncost*production
+sum (volumelevs, amount (volumelevs) *volumedata ("cost",volumelevs))
+sales*salesprice =e= profit;
balanceprod.. sum (volumelevs, amount (volumelevs))=1=production;
balancesales.. sales=1l=sum(volumelevs, amount (volumelevs)) ;

minlimitship(volumelevs) ..
amount (volumelevs)
=g=volumedata ("minimumg",volumelevs) *volumeuse (volumelevs) ;
maxlimitship (volumelevs) ..
amount (volumelevs)
=1= volumedata ("maximumg",volumelevs) *volumeuse (volumelevs) ;
mutexclusiv.. sum(volumelevs, volumeuse (volumelevs))=1=1;
production.up=95;
model deccost /all/
solve deccost using mip maximizing profit;

Solution second integer variable 1s chosen



1-5 cars cost $5 per car
6-50 cars cost $4 per car
51 to 100 more cars cost $3 per car

Min S5x1 +4x2 +3x3

X1 +x2 +x3 >=11
X1 -5D1 <0
X2 -50D2 <0
X3 -100D3 <0
X2 - 6D2 >0
X3 - 5S1D3 >0

D1 +D2 +D3 <1
D1 ,D2, D3 is(0,1)



Handling Indivisibilities
Machinery Selection

The machinery selection problem is a common investment problem. In this
problem one maximizes profits, trading off the annual costs of machinery
purchase with the extra profits obtained by having that machinery. A general
formulation of this problem is

Max - YEY, + Y¥C,.X,
k i m

st - CapyY, +  SYAuX < 0 foralliandk
igDHijjm < b, foralln
>G,. Y, o < e, forallr
' Y, 1s a nonnegative integer, X, 2= 0 forallj,k,andm

The decision variables are
Y,, the integer number of units of the k™ type machinery purchased;
Xim» the quantity of the j™ activity produced using the m™ machinery alternative.

The parameters of the model are:
F,, the annualized fixed cost of the k™ machinery type;
Cap;, the annual capacity of the k™ machinery type to supply the i™ resource;
G,,, usage of '™ machinery restriction when purchasing the k™ machinery type;
Cim, the per unit net profit of X,;;
Ajjms Per unit use by X, of i cap. resource supplied by purchasing machine k;
D, the per unit usage of fixed resources of the n" type by Xi;
b,, the endowment of the n" resource in the year being modeled; and

e,, the endowment of the r™ machinery restriction.



Handling Indivisibilities Machinery Selection

I Machinery Use Continuous Variables
| Plow with Tractor 1 | Plow with Tractor 2 | Plant Disc 8 | Harvest with
. . . Crop Sales |Input
IMachmery Acquisition Integer Variables and Plow 1 and Plow 2 Iand Plow 1 and Plow 2 ITractor 1 Tractor 2 ITractor 1 Tractor 2 I Pur-chases I
ITraclor I Plow IPlamcr IDisc IIIarvcslcr in Period in Period Iin Period in Period I Planter Planter Illar\'cs(cr Harvester I I
1 |2 |1 |2 |1 |2 | |2 | |2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Objectives (max) -5000 -9000 -1000 -1200 -2000 -2100 -1000 -1200 -10000 -12000 24 -2.4 -1.2 -1.2 12 -1.2 -0.6 -0.6 -1.46 -1.22 -0.73 -0.61 -9.33 -8.35 -9.33 -8.25 25 -110
Tractor | |t -160 2 B <0
Capacity I2 180 ] 2 1 ] 11 0833 ] ] ] I <o
in Period I5 1200 | | | |33 25 | | | <o
Tractor 2 1 160 | I 05 | | | | | =0
Capacity [P 150 | | 1 0| 05 04167 | | | | <o
in Period K| 2200 | | | | 33 2 ] | | <0
Plow T Capaciy | | 160 |2 |1 | | | | | =
in Perio 2 | _180 | 2 | i | | | | | <o
R | 7 | | | R
12 | -180 | .1 | 05 ] | | | | <o
Capacity of Ir -180 | | Kl 0.05 | | | | =0
Planter | 4180 | | | 0.0833 o7 | | | | <o
[c)gpacity of |t | “180 | | £ 0.05 | | | | =0
ise | -180 | | | 0.0833 0417 | | | | <o
Capacity of Har- | 1 | -200 | | | | 33 33 | | | <0
vester Lo 200 | | | | 25 25 | | | =0
Labor It ] |24 12 |12 .06 | | | | | <200
AV;llébf 2 | | 24 a2 12 06 |az2 11 06 055 | | | | <210
in Perio I3 .5 375 S5 375 =250
Plow-Plant Sequencing -1 1 -1 1 -1 -1 -1 -1 1 1 1 1 <0
Plant-Harvest Sequencing -1 -1 -1 -1 1 1 1 1 <0
Land Available 1 1 1 1 1 1 1 1 <600
Planters 1 1 <1
Discs | 1 i | | | | | | |
Link Disc- | N 1 | | | | | | B
Planter -1 1 <0
Yield Balance -140 -140 -140 -140 1 <0
Input Balance 1 1 1 1 -1 <0




Table 16.17.

Handling Indivisibilities Machinery Selection

Solution for the Machinery Selection Problem

obj = 116,100

Variable Value Reduced Cost Equation Slack Shadow Price
Buy Tractor 1 1 -5.000 Tractor 1 capacity in Period 1 100 0
Buy Tractor 2 0 0 Tractor 1 capacity in Period 2 130 0
Buy Plow 1 0 0 Tractor 1 capacity in Period 3 50 0
Buy Plow 2 1 -1,200 Tractor 2 capacity in Period 1 0 12
Buy Planter 1 0 0 Tractor 2 capactiy in Period 2 0 14.6
Buy Planter 2 1 -3300 Tractor 2 capacity in Period 3 0 22.26
Buy Disc 1 0 0 Plow 1 capacity in Period 1 0 6.25
Buy Disc 2 1 0 Plow 1 capacity in Period 2 0 0
Buy Harvester 1 0 0 Plow 2 capacity in Period 1 100 0
Buy Harvestor 2 1 0 Plow 2 capacity in Period 2 180 0
Plow with Tractor 1 and Plow 1 in Period 1 0 -2.45 Planter 1 capacity 0 0
Plow with Tractor 1 and Plow 1 in Period 2 0 -1.20 Planter 2 capacity 130 0
Plow with Tractor 1 and Plow 2 in Period 1 600 0 Disc 1 0 0
Plow with Tractor 1 and Plow 2 in Period 2 0 0 Disc 2 130 0
Plow with Tractor 2 and Plow 1 in Period 1 0 -1.825 Harvester 1 0 50
Plow with Tractor 2 and Plow 1 in Period 2 0 -1.46 Harvester 2 50 0
Plow with Tractor 2 and Plow 2 in Period 1 0 0 Labor available in Period 1 128 0
Plow with Tractor 2 and Plow 2 in Period 2 0 0.13 Labor available in Period 2 144 0
Plant with Tractor 1 and Planter 1 0 -1.91 Labor available in Period 3 25 0
Plant with Tractor 1 and Planter 2 600 0 Plow Plant 0 230.533
Plant with Tractor 2 and Planter 1 0 -1.077 Plant Harvester 0 341.75
Plant with Tractor 2 and Planter 2 0 0 Land 0 229.333
Harvest with Tractor 1 and Harvester 1 0 -17.75 One Planter 0 0
Harvest with Tractor 1 and Harvester 2 600 0 One Disc 0 0
Harvest with Tractor 2 and Harvester 1 0 -25.17 Planter 1 to Disc 1 0 0
Harvest with Tractor 2 and Harvester 2 0 -5.565 Planter 2 to Disc 2 0 0
Sell Crop 84,000 0 Yield Balance 0 2.5
Purchase Inputs 600 0 Input Balance 0 110




More on Indivisibilities
Practical Side of Solving

Sounds good but integer problems can be hard to solve
due to search nature of solution process
Three approaches can help
1. Reformulate
a. to better tie integer variables together
b. to better tie integer and continuous variables
together
c. toeliminate “unnecessary” cases of integer
variables
2. Use MIP solver features through options and GAMS

3. Start with a good solution

I have more faith in the first strategy but sometimes latter
two help

Also, these solves are generally slower so one must be
patient

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 21



More on Indivisibilities
Practical Side of Solving
Tie integer variables better together

Often model formulations contain interrelated variables
which the formulation and economics tie together. For
example, in LPs that choose plant size and hire labor, one
could count on the solution to hire enough people.

However, in the MIP world 1f one has 2 sets of integer
variables one for plant size and one for labor force, I
would recommend tying them together with constraints
requiring the large plant to have a large labor force or that
hiring certain sizes of labor force requires certain plant
S1Z€S

Consider a trash recycling problem. A formulation was
set up to choose the size of a recycling effort including the
size of the truck fleet, ferrous metals separator, glass
separator, unsorted trash compactor, etc. The MIP was
very slow, and the solutions were not good enough. I
suggested including constraints so that a given number of
tons of truck capacity implied a minimum size for the
materials separator etc.
(BUYCOM(size)-BUYTRK(SIZE)=0; ). In turn, the
formulation yielded improved solutions faster

Why does this work? This eliminates irrelevant cases and
shrinks the number of solutions that need to be searched.

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 22



More on Indivisibilities
Practical Side of Solving
Tie integer and LP variables better together

Often model formulations require that the integer
variables take on certain values so that the continuous part
of the problem is feasible. For example, in a warehouse
location problems, a given volume of goods may need to
go through some warehouse somewhere so that the
problem be feasible.

In such cases, I would recommend that one require that

the capacity of the warehouses built to be subjected to a
lower bound constraint so that the capacity constructed

exceeds the volume required.

In a problem I was solving for locating grain handling
facilities I discovered that new facilities were needed for
about 1/3 of the crop. By requiring a minimum volume of
such facilities, I cut the required solution time by more

than 75%.

Why did this work? Again I eliminated irrelevant cases
and shrank the number of solutions which needed to be
searched

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 23



More on Indivisibilities
Practical Side of Solving
Tie integer and LP variables better together

Better tying things together also works in terms of tying
the integer variables to the continuous variables. For
example, 1t is common in formulations to have constraints
such as the following

Y, +Y —Md <0

where the Y’s are continuous, M 1s a capacity and d 1s a
zero one indicator or facility construction variable.

In such cases, computational experiments have found that
the solution to the problem with the addition of the two
constraints below yields faster solutions.

Y, -Md<0
Y, - Md <0

Why does this work. Provides a more direct link between
the individual variables and the integer variable, not just
an aggregate link. Also provides better signals when
looking for variables on which to branch. Note the better
solver may reformulate for this automatically but see if it
works.

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 24



More on Indivisibilities
Practical Side of Solving
Limit Feasible region in terms of Integer Solution Space

In integer programming one should endeavor to add as
many constraints as possible to limit the feasible solution
space to the relevant solution space. Lets look at some
reasons and approaches

Consider a problem with N zero-one variables. In such a
case there are 2" possible solutions. But suppose we
know no more than 1 of the integer variables will be
employed. If we enter a constraint requiring the sum of
these N variables to be less than or equal to one, then the
number of possible solutions falls to N+1 (one for all
zeros plus N possibilities in which each of the integer
variables 1s equal to one).

So impose whatever problem knowledge you can on the
situation to limit the feasible integer space as this greatly
reduces the size of the branch and bound search tree.

One can also go further with this topic by solving related
problems which can be used to formulate constraints that
limit the feasible space as we discuss on the following

pages

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 25



More on Indivisibilities
Practical Side of Solving
Limit Feasible region in terms of Integer Solution Space
Insight from the RMIP

Yet another strategy that can be used to narrow the
feasible integer space 1s to examine the LP solution and
see 1f some 1nsight about minimum and maximum values
of integer variables can be gleaned.

Consider a machinery selection problem (a simple version
of which is in machsel.gms). One can set up a MIP but
solve it as an RMIP which treats the integer variables as if
they were continuous. In turn, one might observe the
values of the machinery purchase variables and use those
values to formulate maximum and minimum limits for
classes of variables.

In one case I did that and solved a model where the
variables for purchase of tractors came out to be 3.4 and
4.1. In turn, I added constraints to the model that the
integer variables be greater than or equal to 2 and less
than or equal to 6. In a small model, this reduced solution
time by 90%, and 1n the resultant large model we were in
fact able to solve it and otherwise never would have

Again we reduced the number of possible solutions that
needed to be considered in the search tree

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 26



More on Indivisibilities
Practical Side of Solving
Limit Feasible region in terms of Integer Solution Space
Insight from Auxiliary models

One may be able to gain insight into a problem by solving
problems that are subsets and gain insight into overall
problem feasible region restrictions.

Recently I did a model which was designed to locate
personnel at a number of facilities. These facilities were
spread across the nation and the question was do we
locate a person at this place or serve this place from a
nearby location or hire temporaries? This involved a large
MIP with hundreds of integer location variables and over
a million continuous variables meeting demands at the
service locations (since the problem service aspect
involved a monthly dimension). Initial attempts to solve
the whole problem showed the solvers were very slow
and probably would not converge. So we employed a
strategy involving regional solutions. In particular, we
solved for the number of people in a reduced service area
like a 200 mile radius around San Francisco, and did this
for 15 or so service sub areas. The resultant solutions
revealed a set of possible repair man locations which
could be dropped (those in the inner part of city radii
which were not used) and also provided upper and lower
bounds on the number of people to be hired. It also

provided a feasible starting solution and an initial bound.
©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 27



More on Indivisibilities
Practical Side of Solving
GAMS Options

While I advocate one try to solve integer problems faster
by tightening the formulation, one can also employ
GAMS and solver features to try to speed up solution
processes.

Within GAMS there are two parameters that can be set

modelname.cheat=k; requires that subsequent
solutions have an objective function which 1s at least k
units (an absolute amount) better than the current solution

(works in OSL and CPLEX)

option optcr=k; allows the solver to stop when the
theoretically best possible integer solution 1s within k
percent of the current best found integer solution. There
is also the command option optca=k2; where k2 1s an
absolute amount.

Both of these options cause the solvers to give a solution
that can be suboptimal falling only within the criteria
specified of the best possible optimal solution. However,
they reduce search time substantially and often the
optimal solution is found or is much closer to the solution
found than the bound.

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 28



More on Indivisibilities
Practical Side of Solving
Solver Options

Solver options can also be used

CPLEX permits one to use an options file (cplex.opt)
which
e impose a trial solution specified for the integer
variable levels as a starting solution (mipstart)
® impose priorities for variables to deal with first
(mipordind). Note modelname.prioropt also permits
management of this)
e alter the way problems are selected from the branch
and bound tree (varsel,nodelsel)
e manage the memory used for the branch and bound
tree

These and many other options are discussed in the
CPLEX solver manual

OSL also permits options to be used that alter branch and
bound strategies ( particularly strategy 48 and bbpreproc

)

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 29



More on Indivisibilities
Risk and Integer

Modelers may wish to impose integer restrictions on
nonlinear formulations which for example treat risk.

GAMS contains the DICOPT and SBB solvers which
permit this. They tie together other solvers. For example
SBB can use CPLEX to solve IP sub-problems and
CONOPT to solve nonlinear problems.

For example, suppose we impose restrictions in our
portfolio problem that a minimum of 10 shares be bought

if any and that we buy integer numbers of shares
(INTEV.gms)

Integer VARIABLES INVEST (STOCKS) MONEY INVESTED IN EACH STOCK
binary variables mininv (stocks) at least 10 shares bought
VARIABLE OBJ NUMBER TO BE MAXIMIZED ;
EQUATIONS OBJJ OBJECTIVE FUNCTION

INVESTAV INVESTMENT FUNDS AVAILABLE

minstock (stocks) at least 10 units to be bought
maxstock (stocks) Set up indicator variable ;
OBJJ.. OBJ =E= SUM (STOCKS, MEAN (STOCKS) * INVEST (STOCKS))
- RAP* (SUM(STOCK, SUM(STOCKS,
INVEST (STOCK) * COVAR (STOCK, STOCKS) * INVEST (STOCKS))));

INVESTAV. . SUM (STOCKS, PRICES (STOCKS) * INVEST (STOCKS)) =L= FUNDS;
minstock (stocks) .. invest (stocks) =g= 10*mininv (stocks);
maxstock (stocks) .. invest (stocks)=1=1000*mininv (stocks) ;

MODEL EVPORTFOL /ALL/ ;
SOLVE EVPORTFOL USING MINLP MAXIMIZING OBJ ;

When using DICOPT and SBB it is very important to
tighten the link between continuous and integer variables

©B.A. McCarl, March 2003 More on Indivisibilities ( ) page 30



