Heat Stoich- How much heat? 1. How much heat is produced if 25.00 g of methanol (CH₃OH) is burned in excess O₂? $2 \text{ CH}_3\text{OH}(I) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4\text{H}_2\text{O}(g)$ $\Delta H = -1453 \text{ kJ}$ 2. How much heat is produced if 16.00 g of methanol (CH₃OH) is burned in excess O₂? $2 \text{ CH}_3\text{OH}(I) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4\text{H}_2\text{O}(g)$ $\Delta H = -1453 \text{ kJ}$ 3. How much energy is changed if 45g of P_4 is used with unlimited Cl_2 ? P_4 (s) + 6 Cl_2 (g) \rightarrow 4 PCl_3 (g) $\Delta H = -2439$ kJ 4. How much does the energy change if 23g of Cl_2 is used with unlimited P_4 ? P_4 (s) + 6 Cl_2 (g) \rightarrow 4 PCl_3 (g) $\Delta H = -2439$ kJ $$2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$$ $$\Delta H = -3438 \text{ kJ}$$ $$2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$$ $$\Delta H = -3438 \text{ kJ}$$ $$2~NH_3~(g) \rightarrow ~N_2~(g) + 3~H_2~(g)$$ $$\Delta H = -3438 \text{ kJ}$$ ## How much heat? 1. What is the heat if 25.00 g of methanol (CH $_3$ OH) is burned in excess O₂? The reaction is $2 \text{ CH}_3\text{OH}(I) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4\text{H}_2\text{O}(g)$ ∆H = -1453 kJ -567.578kJ -567.6kJ 2. What is the heat if 16.00 g of methanol (CH $_3$ OH) is burned in excess O $_2$? The reaction is $2 \text{ CH}_3\text{OH}(I) + 3 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 4\text{H}_2\text{O}(g)$ ∆H = -1453 kJ -363.25kJ -363.3kJ 3. What is the heat if 45g of P₄ is used with unlimited Cl₂? $P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g)$ $\Delta H = -2439 \text{ kJ}$ -885.12kJ -890kJ 4. What is the heat if 23g of Cl₂ is used with unlimited P₄? $P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g)$ $\Delta H = -2439 \text{ kJ}$ -790.09859kJ -790kJ 5. What is the heat if you use 245g of NH₃? $2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$ $\Delta H = -3438 \text{ kJ}$ -24,773.82kJ -24,800kJ 6. You produce 6 grams of N2, what is the heat? $2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$ $\Delta H = -3438 \text{ kJ}$ -736.7kJ -700kJ 7. You produce 6 grams of H_2 , what is the heat? $2 \text{ NH}_3 (g) \rightarrow \text{N}_2 (g) + 3 \text{ H}_2 (g)$ $\Delta H = -3438 \text{ kJ}$ -3438kJ -3000kJ