

Mojaloop GitHub repository
management proposal

Version:​ 0.2 draft

Authors:​ Pedro Sousa Barreto (pedrob@crosslaketech.com)

Revision Log

Date Who What Version

12-Mar-2021 pedrob@crosslaketech.com Released for comments 0.1

6-Aug-2021 Ref arch team Updated repo naming schemas 0.2

Intro & problem statement
This document was created with the intention to propose a solution along with
guidelines, to the following problems:

-​ Growing complexity of managing Mojaloop’s GitHub Organization;
-​ Growing number of repositories, contributed and core;
-​ Increasing complexity of deploying Mojaloop platform, due to its multiple

dependencies.

As stated in issue 1879:

“As a contributor/developer can we minimize the number of repos so it is
easier to understand the core components of the hub

I want to develop a plan to lessen the number of repos so that the
mojaloop project is easier to maintain and deploy.”

Issue reference: https://github.com/mojaloop/project/issues/1879

Proposal

Top level hierarchy repository organisation
Today, Mojaloop’s code is arranged in multiple repositories grouped inside a single
GitHub Organization.

In respect to top level hierarchy, the options discussed were:

-​ A single GitHub Organization with all repositories;
-​ Multiple GitHub Organizations.

Regarding the option to implement multiple GitHub Organizations, one The
recommendation is to use a single Git Organisation

Having a single org with multiple repos is preferable, it has the following
advantages:

●​ Single mojaloop org means brand doesn’t erode (not risks of finding the
wrong organization);

https://github.com/mojaloop/project/issues/1879

●​ Easier to manage and secure, no need to sync permissions for admins, or
other privileged members, like reviewers;

It is recommended to keep a single organization and simply reduce the number of
active (not archived) repositories.

Classifying different types of repositories

We can continue using the same label logic, however most people ignore labels
when forming opinions as to which repositories matter. The suggestion is that labels
can be used to tag types of repositories for Mojaloop’s internal purposes, not as a
mechanism to facilitate repository identification by potential contributors.

This is a proposal for the types of repositories:

-​ Service - a deployable service;
-​ Library - a library that one or more Mojaloop repositories depend on;
-​ SDK - a library to be used by external components to connect to Mojaloop;
-​ Tool - a tool that provides independent functionality, can be IaC;
-​ UI - a user interface;
-​ Documentation - documentation project, a single one for

There should be an explicit way to mark official from non-official repositories. This
could be a mandatory header in all repositories README.md files, clearly stating the
status and the type of the repository:

-​ Official Mojaloop - Service
-​ Official Mojaloop - Library
-​ Official Mojaloop - Core Tool
-​ Official Mojaloop - Core UI

Repository names

It is important to have a naming scheme as consistent as possible, these are the
recommendations:

-​ All official repositories should have the prefix “mojaloop-”, or the non-official
have the “contrib-” prefix. Only the “contrib” rule applies, everything not
contrib should be official and not require a prefix.

-​ We should only include words like server, API or adapter when the component
is actually what we’re calling it.

-​ If it provides an external API it should include “-api” in the name.
-​ If it is a service suffix it in “-svc”
-​ If it is a library suffix it in “-lib”
-​ If it is a project repo for Zenhub, suffix it with “-project”
-​ If it is a documentation repo, suffix it with “-doc”
-​
-​

The reason to include only the word “api” in the repo name for services that provide
an external API is to be explicit about the intent to serve external requests.
External developers will connect to Mojaloop’s external APIs, and some other
internal services will provide some form of an API for inter-service consumption, we
shouldn’t add “api” to their names.

Another good example of misleading naming is the “api-adapter” suffix. Software
components are either an Application Programming Interfaces (API) or adapters,
but not both at the same time.
In our case we have “ml-api-adapter” and “thirdparty-api-adapter”, both are just
APIs services or Web APIs, and should be called “ml-api-svc” and
“thirdparty-api-svc”, respectively.

For reference, see here what an adapter is:
https://en.wikipedia.org/wiki/Adapter_pattern

The recommendation is not to go on a renaming spree, only to rename those few
repositories that benefit from a rename, and start applying the naming scheme for
future repositories.

Proposed clean-up
On the 12th of March of 2021, Mojaloop’s Github organization repository had the
following statistics:

-​ Total of 126 repositories, 107 are public, 19 are private;
-​ 23 repositories are archived;
-​ Only ~35% have been updated in the last month (~46 of 126);
-​ Have no updated since
-​ 2 are forks (with no activity)

Proposal:

https://en.wikipedia.org/wiki/Adapter_pattern

-​ Make all experimental repositories private, if the repository cannot be made
private, then maybe it is not experimental anymore;

-​ All non-pinned repositories with no activity in the last 3 months, should be
archived;

-​ All repositories should have a clear status statement on the top of the
readme.md (see above Classifying different types of repositories)

Team & User organisation

Mojaloop can take advantage of the nested teams feature that GitHub provides,
this will facilitate access management for repositories while keeping a manageable
number of top level teams.

Neste teams automatically inherit repository permissions but not members. This
allows us to set top level teams with general access and have that access applied to
all members that are neste below, while keeping the flexibility of arranging the
nested teams and map them to specific repositories.

Proposed structure:

-​ Admins (rename ml-admins)
-​ ChangeControlBoard (rename board-ccb)
-​ DesignAuthority (rename board-da)
-​ TechnicalGovernanceBoard (rename board-tgb)
-​ Maintainers (rename ml-maintainers)
-​ Reviewers (new)
-​ Contributors (new)

-​ Feature team 1
-​ Feature team 2
-​ etc...

The main benefit of the proposed structure is that, by reducing the number of top
level teams, it is easier to manage top level access and membership, while
maintaining the ability to manage team membership.

A fundamental change is the nesting of all current initiative, project or feature
teams, below the Contributors team, all these teams will inherit the contributor
permissions by default, and specific repository permissions can be managed at

feature team level. We can see that the structure of the “feature-ml-dev” team was
set up like this, but that is not applied all around.

Maintainers - same as today

The purpose of the new top level team “Reviewers'', is to easily group all
contributors that are willing, or have been appointed, to do code reviews for core
Mojaloop code (on top of “Maintainers''). This will enable the usage of @mentions
for the whole team in comments, and also the request of code reviews to the whole
team.

Main github page:

●​ explaining repo structure/logic
●​ rules to create new repos (booted

Clear Text on top of readme showing if a repo is official or contributed
….

User organisation and Teams

Merge strategy
Core Repos

●​ Work is done in separate feature branches, PR is requested
●​ Repo owners are the only ones able to merge to main​

Community Repos

Access management

Recurring maintenance

●​ Archive and remove contrib (non-official) repos with no activity in the last X
months

●​ Promote to official the repos that might need to be promoted

	
	
	Mojaloop GitHub repository management proposal
	Intro & problem statement
	Proposal
	Top level hierarchy repository organisation
	Classifying different types of repositories
	Repository names
	Proposed clean-up
	Team & User organisation
	Merge strategy
	Access management
	Recurring maintenance

