Pre-Calculus: Unit 3 Test Review

Name:

1. What is the exact value of tan(195 degrees)?

- 2. Which expression is equivalent to $cos(\frac{\pi}{12})cos(\frac{5\pi}{12}) + sin(\frac{\pi}{12})sin(\frac{5\pi}{12})$?
 - a. $cos(-\frac{\pi}{3})$
 - b. $sin(\frac{\pi}{2})$
 - c. $sin(-\frac{\pi}{3})$
 - d. $cos(\frac{\pi}{2})$

3. What is the exact value of $tan(\frac{19\pi}{12})$?

4. Simplify $sin(x + \pi)$.

5. What is the value of $1 - 2sin^2(105 degrees)$?

- 6. Which expression is equal to $\frac{1}{\sin(2x)} \frac{\cos(2x)}{\sin(2x)}$?
 - a. $\frac{1}{\cos(x)}$

 - b. tan(x)c. $-\frac{1}{cos(x)}$
 - d. tan(x)

- 7. Which statement is true about the graph of the equation $y = csc^{-1}(x)$?
 - a. There is a vertical asymptote at $x = \frac{\pi}{2}$.
 - b. There is a vertical asymptote at x = 0.
 - c. There is a horizontal asymptote at y = 0.
 - d. There is a horizontal asymptote at $y = \frac{\pi}{2}$.
- 8. What is the solution to the inequality sin(x) > cos(x) over the interval $0 \le x \le 2\pi$.

9. Complete step 4 of the proof.

Review the proof of $\cos(A - B) = \cos A \cos B + \sin A \sin B$.

Step 1:
$$\sqrt{(\cos A - \cos B)^2 + (SinA - \sin B)^2}$$

$$=\sqrt{\left(\cos{(A-B)}-1\right)^2+\left(\sin{(A-B)}-0\right)^2}$$

Step 2:
$$(\cos A - \cos B)^2 + (\sin A - \sin B)^2$$

$$= (\cos (A - B) - 1)^{2} + (\sin (A - B) - 0)^{2}$$

Step 3:
$$\cos^2 A - 2\cos A\cos B + \cos^2 B$$

$$+\sin^2 A - 2\sin A\sin B + \sin^2 B$$

$$=\cos^2{(A-B)}-2\left(\cos{(A-B)}\right)$$

$$+1+\sin^2\left(A-B\right)$$

Step 4:
$$-2\cos A\cos B - 2\sin A\sin B$$

$$=$$
 ______-2 cos $(A - B) + 1$

Step 5:
$$-2(\cos A \cos B + \sin A \sin B) = \cos(A - B)$$

Step 6:
$$\cos A \cos B + \sin A \sin B = \cos(A - B)$$

Step 7:
$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$