
Switching absl::optional to std::optional
 David Benjamin

Last updated: Sep 25, 2023
https://crbug.com/1373619
https://crrev.com/c/4469528 (though see discussion of binary size below)

Although we’ve long moved to C++17, Chromium still reconfigures absl::optional to use a
polyfill over a std::optional typedef. This document discusses switching to the typedef, as
the first step to migrating to std::optional.

The main decision point here is a binary size vs debuggability tradeoff. Do we want better
debuggability and worse binary size (+19K) or worse debuggability and better binary size
(-94K)? More on this below in the OPEN QUESTION section.

Motivations
#include <optional> is a bit shorter than #include
“third_party/abseil-cpp/absl/types/optional.h”.

External C++ libraries may not depend on Abseil and thus use std::optional, such as the
certificate verifier getting extracted to BoringSSL. Even Google projects that do depend on
Abseil will use std::optional as the rest of Google C++ stopped needing the polyfill after
C++17. If there is some way std::optional is worse for us (e.g. bad binary size or memory
usage), we’ll need to understand and resolve it anyway.

Likewise, as std::optional appears in API boundaries for those libraries, we will need to
utter std::optional. Our PRESUBMIT warnings will then get in the way and need
exceptions. std::optional is less common at API boundaries than std::string_view,
but it will still be a source of development friction.

QUICHE is currently blocked on aligning with Google C++ style because of the Chromium
preference, so this will also help them align things.

Finally, Abseil will eventually require C++17. As the Abseil types exist to be polyfills over the
STL ones, they may drop their polyfill at that point. Switching to the typedef avoids putting us in
a bind if that happens.

mailto:davidben@chromium.org
https://crbug.com/1373619
https://crrev.com/c/4469528
https://opensource.google/documentation/policies/cplusplus-support#support_criteria_4

Safety checks
We once preferred Abseil types over libc++ because Abseil had hardening checks. libc++ has
since caught up and we enable libc++’s “safe mode”. There is no security difference between
the two types:

The only hardening checks to add to std::optional / absl::optional are whether
operator-> and operator* check that the value exists. (optional::value is already
required to throw bad_optional_access.) Both libc++ and Abseil do this:
https://source.chromium.org/chromium/chromium/src/+/main:third_party/libc++/src/include/optio
nal;l=998-1050;drc=491ba7b7c3c12d39022bc1fb30f85545eafdb3b4
https://source.chromium.org/chromium/chromium/src/+/main:third_party/abseil-cpp/absl/types/o
ptional.h;l=412-444;drc=5dd7dd46d5ae09b28f5553ca24221eea0072b66f

We also are not giving up significant possibilities of future improvements or safety checks.
absl::optional is maintained as a polyfill for std::optional, so the Abseil team won’t
diverge from std::optional anyway, for better or worse. Abseil or libc++, if we want to
improve on our optional type, we need to stay within the STL’s API contract (which we can
upstream to libc++), or fork the type.

Windows memory usage
libc++‘s std::optional and std::variant were originally larger on Windows. I fixed that in
libc++ upstream, so this is no longer a concern.

Binary size
Trying to switch to std::optional initially reported significant size regressions. I believe the
causes of these are now fixed or understood:

Stack canaries
The majority of the size increase (90K!) was triggered by a change in the field order. Abseil uses
bool; T while libc++ uses T; bool. These two orders have the same size. Some offsets
change, but this is bizarre. It turned out this was a Clang bug.

Chromium built with -fstack-protector, which adds a stack canary to functions that
allocate char buffers on the stack above some size. By default that threshold is 8, but
Chromium previously set it to 4.

https://source.chromium.org/chromium/chromium/src/+/main:third_party/libc++/src/include/optional;l=998-1050;drc=491ba7b7c3c12d39022bc1fb30f85545eafdb3b4
https://source.chromium.org/chromium/chromium/src/+/main:third_party/libc++/src/include/optional;l=998-1050;drc=491ba7b7c3c12d39022bc1fb30f85545eafdb3b4
https://source.chromium.org/chromium/chromium/src/+/main:third_party/abseil-cpp/absl/types/optional.h;l=412-444;drc=5dd7dd46d5ae09b28f5553ca24221eea0072b66f
https://source.chromium.org/chromium/chromium/src/+/main:third_party/abseil-cpp/absl/types/optional.h;l=412-444;drc=5dd7dd46d5ae09b28f5553ca24221eea0072b66f
https://thephd.dev/to-bind-and-loose-a-reference-optional
https://github.com/llvm/llvm-project/issues/61095

4 makes us more likely to trip a Clang bug: in some cases (I think it’s when LLVM’s padding and
Clang’s padding differ?), Clang lowers a C type into an LLVM IR type with explicit padding.
struct { bool; uint64_t; } becomes type { i8, i64 }, while struct {
uint64_t; bool; } becomes type <{ i64, i8, [7 x i8] }>. This explicit padding is
then misinterpreted by -fstack-protector as a C character array! Whenever there is an
optional<T> on the stack such that T has alignment >= 8, we would add a stack protector
with std::optional where there may not have been one with absl::optional. This issue
is compounded by Chrome still shipping 32-bit Arm, and 32-bit Arm is particularly bad at stack
canaries. (Very small offset space for PC-relative loads forces an extra indirection to load
__stack_chk_guard.)

I filed an LLVM bug at https://github.com/llvm/llvm-project/issues/66709. In the meantime, this
issue was worked around by using the default 8-byte threshold, saving 278,544 bytes. With that
fixed, the Abseil and libc++ field orders are comparable. They do change offsets, but the
difference attributable to the ordering is overall in libc++’s favor by 9,349 bytes.

OPEN QUESTION: How to crash
There is still a size increase by 19,432 bytes. This seems to come from crash sequences.

Abseil uses __builtin_trap to abort. libc++ calls _LIBCPP_VERBOSE_ABORT with a format
string (more on this below), which we define to __libcpp_verbose_abort and then
implement with base::ImmediateCrash. That, in turn, is some inline asm.

The libc++ and //base abort inhibits compiler optimization in a way the Abseil one does not.
Between the format string parameters and the inline assembly (depending on whether LTO
inlines it), different aborts in the same function cannot be coalesced together. This means a
function that includes many safety checks needs to emit lots of abort spots. For //base, this was
intentional to improve debuggability, because it means we know which safety check failed in a
crash dump. It is unclear whether this was intentional for upstream libc++. (Though we can
make it intentional by defining _LIBCPP_VERBOSE_ABORT to what we want.)

In contrast, the Abseil version is a compiler intrinsic, so the compiler can freely merge them.

Switching libc++’s _LIBCPP_VERBOSE_ABORT macro to __builtin_trap reduces binary size
by 85,392 bytes. That is, independent of std::optional, we’re paying 85K for this
debuggability already. Switching absl::optional to std::optional saves an additional
9,140 bytes. That aligns with the size savings from switching just the field order, above, which
implies this is the rest of the difference.

This isn’t a good reason to stick with absl::optional. We should evaluate this tradeoff
consistently. That is, we should pick one of these two:

https://github.com/llvm/llvm-project/issues/66709
https://chromium-review.googlesource.com/c/chromium/src/+/4874869
https://chromium-review.googlesource.com/c/chromium/src/+/4864083?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://chromium-review.googlesource.com/c/chromium/src/+/4469528?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://source.chromium.org/chromium/chromium/src/+/main:third_party/abseil-cpp/absl/base/optimization.h;drc=5a0d82064a7c8c322f45ad1680abd1d5c1b798f6;l=191
https://source.chromium.org/chromium/chromium/src/+/main:third_party/libc++/src/include/__assert;l=20-24;drc=2a6e6c1d4d9b96237ccf9106eb139869e8cc4f48
https://source.chromium.org/chromium/chromium/src/+/main:buildtools/third_party/libc++/__config_site;l=61-63;drc=14a28b9ae4fd13ba34129e1527ebbc8dc5beaaa2
https://source.chromium.org/chromium/chromium/src/+/main:base/nodebug_assertion.cc;drc=25c6ec78813853f8d0c34cd39dd940c94c5eb544;l=12
https://source.chromium.org/chromium/chromium/src/+/main:base/immediate_crash.h;l=70-76;drc=b74163d3d63e781ce9899ec6a4e5a7c113d960b9
https://chromium-review.googlesource.com/c/chromium/src/+/4880180?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://chromium-review.googlesource.com/c/chromium/src/+/4879670/2?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://chromium-review.googlesource.com/c/chromium/src/+/4879670/2?checksRunsSelected=Chromium%20Binary%20Size&tab=checks
https://chromium-review.googlesource.com/c/chromium/src/+/4864083?checksRunsSelected=Chromium%20Binary%20Size&tab=checks

1.​ Either we believe the debuggability is worth the size hit. We should then switch

absl::optional to std::optional to improve debuggability and pay the 19K for
our belief.

2.​ Or we believe the debuggability is not worth the size hit, at least for STL-like libraries
with lots of inlined safety checks. We should then switch _LIBCPP_VERBOSE_ABORT to
__builtin_trap, save 85K, then absl::optional to std::optional for an
additional 9K savings from the better field order. For those savings, we’ll pay some
debuggability on STL safety checks.

Which is our preference?

IWYU
Removing Abseil’s polyfill means third_party/abseil-cpp/absl/types/optional.h
pulls in fewer transitive Abseil headers. Most of the CLs on https://crbug.com/1373619 are to
tidy that up.

Future work and related issues

LSC
After this change lands, we should do an LSC to replace references to absl::optional to
std::optional, but this can be a later project. In the meantime, the two types will
interoperate cleanly as they’ll be aliases for each other. This document does not propose a
particular way to do this, but tooling for it would sure be nice.

std::variant
Early attempts at std::variant showed a similar binary size cost, but they were likely all
analogous to the std::optional causes. There’s also an outstanding bug that we’ll need
fixed. After that, and after we’ve decided how to handle std::optional, we can run a couple
experiments to confirm std::variant adds no new size issues. If not, we can apply the same
decision to std::variant.

Verbose aborts
Keen eyes may have noticed above that _LIBCPP_VERBOSE_ABORT seems to currently be
worse than base::ImmediateCrash. It passes in a format string, __FILE__, and __LINE__,
and then ignores it. When the function isn’t inlined, those end up in the binary!

https://crbug.com/1373619
https://github.com/llvm/llvm-project/issues/62332

None

This is https://crbug.com/1411831. Unfortunately, fixing it either with an inline
base::ImmediateCrash or an out-of-line version still increased binary size altogether. The
two I tried were:

●​ https://crrev.com/c/4874969 - 33,811 byte size increase
●​ https://crrev.com/c/4873454 - 48,165 byte size increase

I’m not sure exactly what’s going on here. Looking at the breakdown, it seems some functions
got smaller, but others got significantly larger, particularly one function that creates many
std::strings (more below). I didn’t dig very carefully, but it seems making aborts cheaper
caused Clang to be more willing to inline things, but then that caused it to generate larger code.
I suspect the inline asm blocks also throw Clang off. (Even out-of-line, I still saw inlining,
possibly from LTO.)

That said, some of the size increase might also be from increased debuggability. I think the new
way to compile the function above actually fixed a “problem” where the distinct std::string
constructor calls got deduped.

This needs more exploration, but I think it should be treated as orthogonal.

Unoptimized non-overlapping checks
That constructing std::strings requires a safety check is surprising. The function in question
was
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/asmjs/asm-types.cc;drc=32e
6b48fca669a4a5dce7844396dbc9040649bc6;l=28. Underneath all the macros, it’s just doing:

std::string AsmType::Name() {
 ...
 switch (some_integer) {
 case foo:
 return "foo";
 case bar:
 return "bar";
 ...
 }
 ...
}

https://crbug.com/1411831
https://crrev.com/c/4874969
https://crrev.com/c/4873454
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/asmjs/asm-types.cc;drc=32e6b48fca669a4a5dce7844396dbc9040649bc6;l=28
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/asmjs/asm-types.cc;drc=32e6b48fca669a4a5dce7844396dbc9040649bc6;l=28

There’s no reason for constructing a std::string out of a string literal to require a safety
check. This comes from the constructor calling std::char_traits<char>::copy under the
hood, which has a non-overlapping requirement. Clang seems unable to optimize it out.
Granted, aliasing analysis is hard, but this should be an easy case. I filed
https://github.com/llvm/llvm-project/issues/66953 for this.

Another fix could be to disable some of the checks. libc++ is moving to having a separate
“hardened” mode from “safe” mode that disables some checks. We currently use “safe” mode.
However, there are still many checks that are uncategorized (which we’d lose) and it is unclear
whether we want to lose all the checks that “safe” mode loses.

TODO(davidben): There’s the bug above about LLVM not optimizing something, but file a more
general bug about specifically std::string being full of these checks. That could be resolved
by making LLVM smarter, or we could change libc++ to not do these checks in some (which?)
cases.

https://github.com/llvm/llvm-project/issues/66953
https://source.chromium.org/chromium/chromium/src/+/main:third_party/libc++/src/include/__config;l=308-334;drc=59135367f2d5b741039d8e4b12d71741640a74ae

	Switching absl::optional to std::optional
	Motivations
	Safety checks
	Windows memory usage
	Binary size
	Stack canaries
	OPEN QUESTION: How to crash

	IWYU
	Future work and related issues
	LSC
	std::variant
	Verbose aborts
	Unoptimized non-overlapping checks

