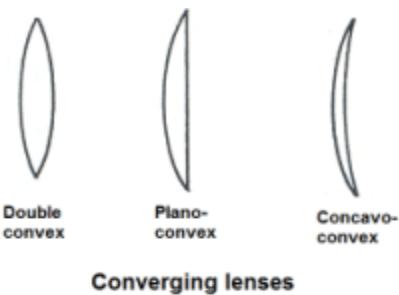
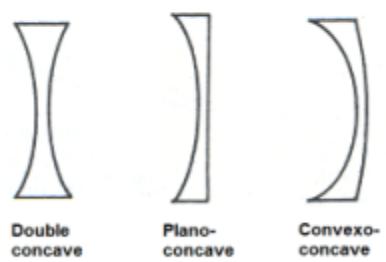


Update to include safety goggles and 3x parallel laser pointer, Copy the angle handout on the box


Add in background information

The "angle of incidence" on a prism with a laser refers to the angle between the incoming laser beam and the normal line (perpendicular line) drawn at the point where the laser beam strikes the prism's surface; essentially, it's the angle at which the laser light hits the prism face.


Prism Type	Angle of Incidence	Angle of Refraction	Drawing of Light Path	
Triangular			Face 1:	Face 3:

			Face 2:	Side:
Spherical			1 Face/Infinite:	
Cubic			Face 1:	Side:
Prism Type	Angle of Incidence	Angle of Refraction	Drawing of Light Path	Prism Type
Pyramidal			Face 1:	Face 2:

Side:				

Converging lenses

Diverging lenses

Fig. 11

1. Place the 3x parallel laser flat on the table, still at 30 cm. There may be 3 tiny switches on the laser point, adjust them to create three parallel lines one the wall and/or table. Then place your convex lens at the wall laying flat and slowly move towards the laser pointer.
 - a. Draw the light paths.
2. Repeat with concave lens.
 - a. Draw the light paths