$$f(x) \equiv x^3 - (a+b+1)x^2 + (a+b+ab)x - ab$$

a. Use the remainder theorem to show that (x-1) is a factor of f(x)

$$f(1) = 1 - (a + b + 1) + (a + b + ab) - ab = 0$$

 $\therefore (x - 1)$ is a factor of $f(x)$

b. Find f(a)

$$f(a) = a^3 - (a+b+1)a^2 + (a+b+ab)a - ab$$

= $a^3 - a^3 - a^2b - a^2 + a^2 + ab + a^2b - ab$
= 0

c. Write down the factors of f(x).

$$f(x) = (x-1)(x-a)(x-b)$$

2.

$$4p^2 - q^2 = 25$$

Prove by contradiction that there are no pairs of positive integers p and q for which this is true. Assume there are at least one pair of positive integers p and q such that $4p^2 - q^2 = 25$ is true.

$$4p^2 - q^2 = 25$$

 $(2p+q)(2p-q) = 25$

This contradicts the assumption, therefore there are no pairs of positive integers p and q for which $4p^2-q^2=25$ is true.

(5)

(2)

(2)

Solve in the range $0 \leqslant \theta \leqslant 360^{\circ}$

$$2\sec heta = an heta - \cot heta$$
 $rac{2}{\cos heta} = rac{\sin heta}{\cos heta} - rac{\cos heta}{\sin heta}$ $2\sin heta = \sin^2 heta - \cos^2 heta$ $2\sin heta = \sin^2 heta - (1 - \sin^2 heta)$ $2\sin^2 heta - 2\sin heta - 1 = 0$ $\sin heta = rac{2 \pm \sqrt{2^2 - 4(2)(-1)}}{2(2)}$ $\sin heta
eq rac{1 + \sqrt{3}}{2}$ $\sin heta = rac{1 - \sqrt{3}}{2}$ $heta = -21.5, 201.5, +360n$ $heta = 201.5, 338.5^\circ$

(4)

4.

$$\mathrm{f}(t) = 3(0.8)^t + 4,\, t \geqslant 0$$

a. Sketch $y=\mathrm{f}(t)$ showing the equation of the asymptote and the value of the y intercept.

(2)

b. State the range of f(t)

$$4 < \mathrm{f}(t) \leqslant 7$$

(2)

c. Solve f(t) = 5 giving your answer to 2 decimal places.

$$3(0.8)^{t} + 4 = 5$$
 $(0.8)^{t} = \frac{1}{3}$
 $t \ln 0.8 = \ln \frac{1}{3}$
 $t = \frac{-\ln 3}{\ln 0.8}$
 $t = 4.92 (2 \text{dp})$

d. Find the value of t when $f'(t) = -\frac{1}{10}$ giving your answer correct to 2 decimal places.

$$3 \ln (0.8)(0.8)^t = -rac{1}{10} \ (0.8)^t = -rac{1}{30} \ln (0.8) \ t \ln 0.8 = \ln \left[-rac{1}{30} \ln (0.8)
ight] \ t = 21.96 \, (2\mathrm{dp})$$

(3)

5.

In an industrial process the amount of pollution *P* caused by burning *c* tonnes of coal per hour is modelled by the equation

$$P=rac{c^2+12}{3\sqrt{c}-9},\,c>9$$

a. Show that the minimum value of *P* occurs when *c* satisfies the equation

$$c - 4\sqrt{c} + \frac{4}{c} = 0$$

$$\frac{\mathrm{d}P}{\mathrm{d}c} = \frac{(2c)(3\sqrt{c} - 9) - (c^2 + 12)(\frac{3}{2\sqrt{c}})}{(3\sqrt{c} - 9)^2} = 0$$

$$0 = (2c)(3\sqrt{c} - 9) - (c^2 + 12)(\frac{3}{2\sqrt{c}})$$

$$(2c)(3\sqrt{c} - 9) = (c^2 + 12)(\frac{3}{2\sqrt{c}})$$

$$2c\sqrt{c} - 6c = \frac{c^2}{2\sqrt{c}} + \frac{6}{\sqrt{c}}$$

$$2c - 6\sqrt{c} = \frac{c}{2} + \frac{6}{c}$$

$$4c - 12\sqrt{c} = c + \frac{12}{c}$$

$$3c - 12\sqrt{c} - \frac{12}{c} = 0$$

$$c - 4\sqrt{c} - \frac{4}{c} = 0$$

(3)

b. Show that a root of this equation lies in the interval

$$10 < c < 25$$

$$\mathrm{f}(c) = c - 4\sqrt{c} - \frac{4}{c}$$
 $\mathrm{f}(10) = -3.049$
 $\mathrm{f}(25) = 4.84$

Change signs and f(c) is continuous in the interval, therefore a turning point lies in the interval.

c. By taking an initial estimate of the root of this equation $c_0=25$

Use the iterative procedure
$$\,c_{n+1}=4\sqrt{c_n}-rac{4}{c_n}\,$$

to find further estimates c_1 , c_2 and c_3 giving your answers correct to 3 decimal places.

$$c_1=19.84$$

$$c_2=17.615$$

$$c_3=16.561$$

(2)

d. Illustrate the convergence of their estimates in the graph on the insert sheet.

a. Calculate the sum of all the even numbers from 2 to 100 inclusive,

$$2+4+6+...+100$$

$$\mathrm{sum} = \frac{50}{2}(2+100) = 2550$$

(3)

b. In the arithmetic series

$$k + 2k + 3k + \ldots + 100$$

k is a positive integer and *k* is a factor of 100.

i. Find, in terms of *k*, an expression for the number of terms in this series.

$$u_n = a + (n-1)d \ 100 = k + (n-1)k \ rac{100 - k}{k} = n - 1 \ n = rac{100 - k}{k} + 1 \ n = rac{100}{k}$$

(2)

ii. Show that the sum of this series is

$$50 + \frac{5000}{k}$$

$$sum = \frac{n}{2} [2a + (n-1)d]$$

$$= \frac{100}{2k} \left[2k + \left(\frac{100}{k} - 1 \right) k \right]$$

$$= \frac{50}{k} \left(2k + \frac{100 - k}{k} (k) \right)$$

$$= \frac{50}{k} (k + 100)$$

$$= 50 + \frac{5000}{k}$$

(4)

c. Find, in terms of *k*, the 50th term of the arithmetic sequence

$$(2k+1), (4k+4), (6k+7), \ldots,$$

giving your answer in its simplest form.

$$egin{aligned} d &= 4k+4-(2k+1) = 2k+3 \ a &= 2k+1 \ U_n &= a+(n-1)d \ U_{50} &= 2k+1+49(2k+3) \ &= 100k+148 \end{aligned}$$

Evaluate

a.

$$\int_0^{rac{\pi}{6}} 2\sin^2 3x \,\mathrm{d}x$$
 $\cos 2A = 1 - 2\sin^2 A$ $2\sin^2 A = 1 - \cos 2A$

$$I = \int_0^{rac{\pi}{6}} 2 \sin^2 3x \, \mathrm{d}x$$
 $= \int_0^{rac{\pi}{6}} (1 - \cos 6x) \mathrm{d}x$
 $= \left[x - rac{1}{6} \sin 6x
ight]_0^{rac{\pi}{6}}$
 $= rac{\pi}{6} - 0 - (0)$
 $= rac{\pi}{6}$

h

$$egin{split} \int_0^1 x \mathrm{e}^{x^2+1} \mathrm{d}x \ & \int_0^1 x \mathrm{e}^{x^2+1} \mathrm{d}x = rac{1}{2} \int_0^1 (2x) \Big(\mathrm{e}^{x^2+1} \Big) \mathrm{d}x \ & = rac{1}{2} \Big[\mathrm{e}^{x^2+1} \Big]_0^1 \ & = rac{1}{2} ig(\mathrm{e}^2 - \mathrm{e}^1 ig) \end{split}$$

(3)

OAB is a sector of a circle centre O, radius 12 cm and angle 1.2° .

AC is a tangent to the circle.

Find the perimeter of ABC.

$$\tan 1.2 = \frac{AC}{12}$$

$$AC = 30.866$$

$$\begin{aligned} \cos 1.2 &= \frac{12}{OC} \\ OC &= 33.116 \\ &= \\ \text{perimeter} &= AC + \text{arc}\,AB + (OC - OB) \\ &= 30.866 + 12(1.2) + 33.116 - 12 \\ &= 66.4\,\text{cm}\,(3\text{sf}) \end{aligned}$$

(4)

Find the shortest distance between the circle

$$(x-3)^2 + (y-2)^2 = 9$$
$$3x + 2y + 13 = 0$$

and the line

$$3x+2y+13=0$$
 $y=-rac{3}{2}x-rac{13}{2}$ gradient of AC $=rac{2}{3}$

equation of line AC

$$y-2=rac{2}{3}(x-3)$$
 solving for A $-rac{3}{2}x-rac{13}{2}-2=rac{2}{3}x-2$ $-rac{13}{2}=rac{13}{6}x$ $x=-3$ $y=-2$ $A=(-3,-2)$ $AC=\sqrt{(3+3)^2+(2+2)^2}=\sqrt{52}$ shortest distance $=\sqrt{52}-3$

 $=2\sqrt{13}-3$

(9)

a. Use the binomial expansion to find constants *A* and *B* such that

$$(x+h)^n \equiv x^n + Ax^{n-1} + Bx^{n-2} + \dots$$

giving your answers in terms of n and h.

$$(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2$$
 $A = \binom{n}{1}h$
 $= \frac{n!}{1!(n-1)!}h$
 $= nh$
 $B = \binom{n}{2}h^2$
 $= \frac{n!}{1!(n-2)!}h^2$
 $= n(n-1)h^2$

(3)

b. Use differentiation from first principles to show that

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}x}(x^n) &= nx^{n-1} \ rac{\mathrm{d}}{\mathrm{d}x}x^n &= \lim_{h o 0} rac{(x+h)^n - x^n}{h} \ &= \lim_{h o 0} rac{x^n + nhx^{n-1} + n(n-1)h^2x^{n-1} + \dots - x^n}{h} \ &= \lim_{h o 0} ig(nx^{n-1} + n(n-1)hx^{n-1} + \dotsig) \ &= nx^{n-1} \end{aligned}$$

In fig 2 $\overrightarrow{OA} = 3a$, $\overrightarrow{OB} = 2b$, $\overrightarrow{OB} = 2\overrightarrow{OD}$, $\overrightarrow{OA} = 3\overrightarrow{OC}$, $\overrightarrow{DE} = p\overrightarrow{DA}$ and $\overrightarrow{CE} = q\overrightarrow{CB}$

a. Find in terms of \mathbf{a} and \mathbf{b} expressions for

i.
$$\overrightarrow{DA}$$

$$\overrightarrow{DA} = \overrightarrow{DO} + \overrightarrow{OA}$$

$$= -\mathbf{b} + 3\mathbf{a}$$

ii.
$$\overrightarrow{CB}$$

$$\overrightarrow{CB} = \overrightarrow{CO} + \overrightarrow{OB}$$

$$= -\mathbf{a} + 2\mathbf{b}$$

(3)

b. Show that $\overrightarrow{OE} = 3p\mathbf{a} + (1-p)\mathbf{b}$

$$\overrightarrow{OE} = \overrightarrow{OD} + \overrightarrow{DE}$$

$$= \mathbf{b} + p(-\mathbf{b} + 3\mathbf{a})$$

$$= 3p\mathbf{a} + (1 - p)\mathbf{b}$$

(2)

c. Find another expression for \overrightarrow{OE} in terms of $\mathbf{a}, \, \mathbf{b} \, \mathrm{and} \, q$

$$\overrightarrow{OE} = \overrightarrow{OC} + \overrightarrow{CE}$$

$$= \mathbf{a} + q(-\mathbf{a} + 2\mathbf{b})$$

$$= (1 - q)\mathbf{a} + 2q\mathbf{b}$$

d. Find the values of p and q.

$$3p = 1 - q \quad [1] \ 1 - p = 2q \quad [2] \ ext{sub} \ [2] \ ext{into} \ [1] \ 3(1 - 2q) = 1 - q \ 3 - 6q = 1 - q \ 2 = 5q \ q = rac{2}{5} \ p = rac{1}{5}$$

(2)

12.

$${
m e}^{2x}rac{{
m d}y}{{
m d}x}=x+k$$
 where k is a constant

a. Find the solution to this differential equation in the form

$$y = f(x)$$
 given that $y = 1$ when $x = 0$

$$\begin{aligned} \mathrm{e}^{2x} \frac{\mathrm{d}y}{\mathrm{d}x} &= x + k \\ \int \mathrm{d}y &= \int \mathrm{e}^{2x} (x+k) \mathrm{d}x \\ y &= \frac{1}{2} \mathrm{e}^{2x} (x+k) - \int \left(\frac{1}{2} \mathrm{e}^{2x}\right) \mathrm{d}x \\ y &= \frac{1}{2} \mathrm{e}^{2x} (x+k) - \frac{1}{4} \mathrm{e}^{2x} + c \\ 1 &= \frac{1}{2} \mathrm{e}^{0} (k) - \frac{1}{4} \mathrm{e}^{0} + c \\ c &= \frac{5}{4} - \frac{k}{2} \\ y &= \frac{1}{2} \mathrm{e}^{2x} (x+k) - \frac{1}{4} \mathrm{e}^{2x} + \frac{5}{4} - \frac{k}{2} \end{aligned}$$

(8)

b. Given that the curve y = f(x) has a turning point when x = 6, find the value of k.

$$\mathrm{e}^{2x}rac{\mathrm{d}y}{\mathrm{d}x}=x+k \ \mathrm{e}^{2(6)}(0)=6+k \ k=-6$$

(1)

Fig 3 shows part of the curve $y = \sin^{-1} x$.

The region R is bounded by the curve, the $x-\mathrm{axis}$ and the lines $x=\frac{1}{2}$ and x=1

a. Complete the table below

x	$\frac{1}{2}$	$\frac{2}{3}$	<u>5</u> 6	1
$\sin^{-1} x$	0.5236	0.7297	0.9851	1.5708

(1)

b. Use the trapezium rule with 4 ordinates to find an estimate for the size of area R giving your answer correct to 3 decimal places.

$$R = rac{1}{2} igg(rac{1}{6}igg) [0.5236 + 1.5708 + 2(0.7297 + 0.9851)] \ = 0.460 \, (3 ext{sf})$$

c. Use the substitution $x = \sin u$ to evaluate exactly

$$\int_{\frac{1}{2}}^1 \sin^{-1} x \; \mathrm{d}x$$

expression for dx

$$x = \sin u$$

$$\frac{dx}{du} = \cos u$$

$$dx = \cos u \, du$$

$$\sin^{-1}x = u$$

changing limit

$$1 = \sin u$$
 $u = \frac{\pi}{2}$
 $\frac{1}{2} = \sin u$
 $u = \frac{\pi}{6}$

$$\begin{split} I &= \int_0^1 \sin^{-1} x \, \mathrm{d}x \\ I &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} u \cos u \, \mathrm{d}u \\ I &= \left[(u) (\sin u) \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} - \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1) (\sin u) \mathrm{d}u \\ &= \frac{\pi}{2} \sin \frac{\pi}{2} - \frac{\pi}{6} \sin \frac{\pi}{6} + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin u \, \mathrm{d}u \\ &= \frac{\pi}{2} - \frac{\pi}{12} - \left[\cos u \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\ &= \frac{5\pi}{12} - \left(0 - \frac{\sqrt{3}}{2} \right) \\ &= \frac{5\pi}{12} - \frac{\sqrt{3}}{2} \end{split}$$

(6)

d. Explain why the trapezium rule gives an overestimate for the value of area R.

The curve is bending downward

(1)

Insert for Question 5

