
MD Bookmarks context menu and
keyboard shortcuts

Status:Draft
Author: tsergeant@chromium.org

Objective

Background

Detailed Design
Initialization
Adding commands

Adding keyboard shortcuts
Adding commands to the context menu

Available commands
Context menu
Keyboard shortcuts

Opening URLs
Public API

Events
Context menu
Command Handlers

Caveats/Alternative Approaches
Using <command>

Test Plan

Document History

Objective
Define an element which handles ‘commands’ in the MD Bookmark manager, by controlling
context menus and keyboard shortcuts and ensuring that logic is applied consistently across
commands.

Background
In the bookmarks manager, it is possible to execute several different editing or browsing
commands: eg, deleting bookmarks, or opening a folder of bookmarks in a new window. These
commands can be executed from either a context menu (opened by right clicking on a
bookmark item or sidebar node), or by keyboard shortcut. Commands may be enabled or
disabled based on the current UI or profile state. In some cases (delete), there are other pieces
of UI which are also able to execute the command. Further, some commands (edit) need to
show additional UI as the action is executed.

In order to manage this, we will create a dedicated element which is able to show the context
menu, handle keyboard shortcuts, and display associated UI. By doing this, logic is
deduplicated into one place, and new commands are easier to add.

Detailed Design

Initialization
We will create a new element, <bookmarks-command-manager>. This will be created and
attached to the page as a child of <bookmarks-app>. During attached(), the element will start
listening for keydown events on the main document.

TBD: It may be necessary to expose this element instance somewhere (like
bookmarks.CommandManager.getInstance()) to allow other elements to call command
handlers.

Adding commands
To add a new command:

1. Add the command name to the enum in constants.js
2. Add a case to canExecute() to determine when the command is enabled
3. Add a case to handle() to execute the command

Then, you can add a keyboard shortcut and/or a context menu item as required (it is possible to
skip either step).

Adding keyboard shortcuts
Keyboard shortcuts are registered during attached():

this.shortcuts_[‘copy’] = cr.isMac ? ‘meta+c’ : ‘ctrl+c’;

Keyboard shortcuts are specified using the syntax of iron-a11y-keys, which is used to parse and
check shortcuts. Notably, it is possible to specify multiple shortcuts for one command by
separating them with space.

Once a shortcut has been registered, the global keydown handler will check each event to see if
it matches any available shortcut. If it does, it will call canExecute(command) and then (if
allowed) handle(command) for the currently selected items.

Adding commands to the context menu
Commands should be added to the context menu in command_manager.html following a set
template:

<button class="dropdown-item"
 command="copy"
 hidden$="[[!canExecute(‘copy’ menuIds_)]]"
 on-tap="handleCommandClick_">
 $i18n{menuCopyURL}
</button>

This way, all commands are guaranteed to show/hide and execute in the same way.

Available commands

Context menu
Visible if means the command will appear in the context menu, Disabled if means the
command will not be clickable in the context menu. Shortcuts will only be enabled if the
command is visible and not disabled.

Command Visible if Disabled if Mac
shortcut

Non-mac
shortcut

Edit
(rename)

A single node is selected
AND editing is enabled
globally

The selected node is
unmodifiable

Enter F2

Copy URL A single item node is
selected

 Meta-C Ctrl-C

https://www.webcomponents.org/element/PolymerElements/iron-a11y-keys

Show in
folder

A single node is selected
AND search is active
AND the menu was
opened from the list

Delete Anything is selected and
Editing is enabled
globally

Any selected node is
unmodifiable (?)

Delete
Backspace
Meta-Backs
pace

Delete

Separator
line

Any of the above is true
ie, editing is enabled
globally OR a single item
node is selected

Open all
OR Open
in new tab

Anything is selected The set of selected
nodes (after expanding
folders one level) is
empty

Meta-enter Ctrl-enter

Open (all)
in new
window

Anything is selected The set of selected
nodes (after expanding
folders one level) is
empty

Shift-Enter Shift-Enter

Open (all)
in incognito

Anything is selected The set of selected
nodes (after expanding
folders one level) is
empty OR all urls are
special chrome urls OR
incognito is disabled

Keyboard shortcuts

Command Enabled if Mac
shortcut

Non-mac
shortcut

Open (in
foreground
tabs)

Anything is selected Meta-Down Enter

Undo The undo service allows us to undo something
Always enabled

Meta-Z Ctrl-Z

Redo Always enabled Meta-Shift-Z Ctrl-Shift-Z
Ctrl-Y

http://crbug.com/666274
http://crbug.com/666274

Cut Editing is allowed and the selected nodes are
modifiable

Meta-X Ctrl-X

Paste Search is not active, and the selected folder’s
children are modifiable

Meta-V Ctrl-V

Select all Always enabled Meta-A Ctrl-A

Deselect all Always enabled Escape Escape

Opening URLs
The bookmark manager lets you open bookmarks in several ways: From mouse, keyboard or
context menu.

● Open bookmarks in foreground tabs in current window.
○ Double click any bookmark (shift or ctrl double-click to do it with multiple

selected)
○ Enter or meta-down
○ Note that if you do this to a single folder, it will select that folder in the BMM

rather than opening the bookmarks
● Open bookmarks in background tabs in current window

○ Use the ‘Open all’ context menu item
○ Ctrl-enter (doesn’t work correctly in BMM)

● Open bookmarks in new window
○ Use ‘Open in new window’ context menu item
○ Shift-enter (doesn’t work correctly in BMM)

● Open bookmarks in new incognito window
○ Use context menu item

● Opening bookmarks with middle-click
○ When middle clicking an item, always select that item
○ Middle clicking a bookmark (not a folder) opens that one bookmark in a new

background tab (or foreground tab if shift is held)
Context menu items and keyboard shortcuts can be directly handled by the Command Manager.
Mouse events will need to be handled by <bookmarks-item> and then passed into the command
manager (by event?) to open the relevant items.

Public API

Events
open-item-menu
Opens the context menu for the currently selected set of items at either
e.detail.targetElement, or (e.detail.x, e.detail.y).

Context menu
openContextMenu(element)
Show the context menu, positioned to cover |element|
TBD: This currently always shows the context menu for the selected set of elements. This may
need to change when we make it possible to show a context menu on the sidebar.

openContextMenuAt(x, y)
As above, but at specific screen co-ordinates

closeContextMenu()
Close the context menu if it is open

Command Handlers
canExecute(command, itemIds)
Returns true if the command can be executed for the given set of items

handle(command, itemIds)
Executes the command for the set of items, showing any UI (dialogs, toasts) as necessary.

Caveats/Alternative Approaches

Using <command>
WebUI has an existing system for tying keyboard shortcuts to context menus, <command> and
<cr-menu>. This is used extensively in the old bookmark manager. This system predates
Polymer, does not natively support Mac shortcuts, and would require significant work to
integrate with the new <cr-action-menu>.

Test Plan
What are the sub-units of your system that will be independently testable? Tests must be
approved by the code reviewer, and must follow the guidelines in the unittesting document as
far as possible. If there are changes envisaged in your future work, would your tests verify the
base functionality? If some of your tests cannot be easily automated (e.g. UI tests), how will you
document the needed special procedures?

Document History
2017-05-05: Increased detail on how bookmarks are opened from different places. Split apart

when context menu commands are “visible” and “enabled”.
2017-04-24: First draft

	MD Bookmarks context menu and keyboard shortcuts
	Objective
	Background
	Detailed Design
	Initialization
	Adding commands
	Adding keyboard shortcuts
	Adding commands to the context menu

	Available commands
	Context menu
	Keyboard shortcuts

	Opening URLs
	Public API
	Events
	Context menu
	Command Handlers

	Caveats/Alternative Approaches
	Using <command>

	Test Plan
	Document History

