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​
Abstract: ​
​
The remarkable sequence prediction abilities of current AI systems has resulted in a flurry of 
world-changing applications. However, pretraining LLMs requires billions of example sequences 
and thus demands a massive amount of raw computational power (FLOPs), necessitating 
distributed computations. Achieving high compute utilization across such a large quantity of 
processors has proven to be challenging due to the communication volume. In addition to the 
very large scale, data-dominated settings, many training scenarios (post-training, fine-tuning) 
require significantly less FLOPs but still operate over large models which consume significant 
fractions of expensive on-device memory – in these settings distributed processing is commonly 
commissioned simply to satisfy the memory needs. ​
 
I will present a scheme that maintains near peak computational throughput even in highly 
constrained communication or on-device memory environments. The key insights are (1) 
constructing a model pipeline via cyclic sharding of layers, forming a ring-track for data to flow 
along (2) employing “Temporal” parallelism wherein chunks form a sequential train moving along 
the pipeline (3) continual prefetching/checkpointing in/out of device memory by taking 
advantage of cheaper, larger capacity local system DRAM. This division of labor among workers 
and tasks opens doors for AI to process richer information sources (longer sequences) at full 
compute utilization.  
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