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Abstract:

The remarkable sequence prediction abilities of current Al systems has resulted in a flurry of
world-changing applications. However, pretraining LLMs requires billions of example sequences
and thus demands a massive amount of raw computational power (FLOPs), necessitating
distributed computations. Achieving high compute utilization across such a large quantity of
processors has proven to be challenging due to the communication volume. In addition to the
very large scale, data-dominated settings, many training scenarios (post-training, fine-tuning)
require significantly less FLOPs but still operate over large models which consume significant
fractions of expensive on-device memory — in these settings distributed processing is commonly
commissioned simply to satisfy the memory needs.

| will present a scheme that maintains near peak computational throughput even in highly
constrained communication or on-device memory environments. The key insights are (1)
constructing a model pipeline via cyclic sharding of layers, forming a ring-track for data to flow
along (2) employing “Temporal” parallelism wherein chunks form a sequential train moving along
the pipeline (3) continual prefetching/checkpointing in/out of device memory by taking
advantage of cheaper, larger capacity local system DRAM. This division of labor among workers
and tasks opens doors for Al to process richer information sources (longer sequences) at full
compute utilization.
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