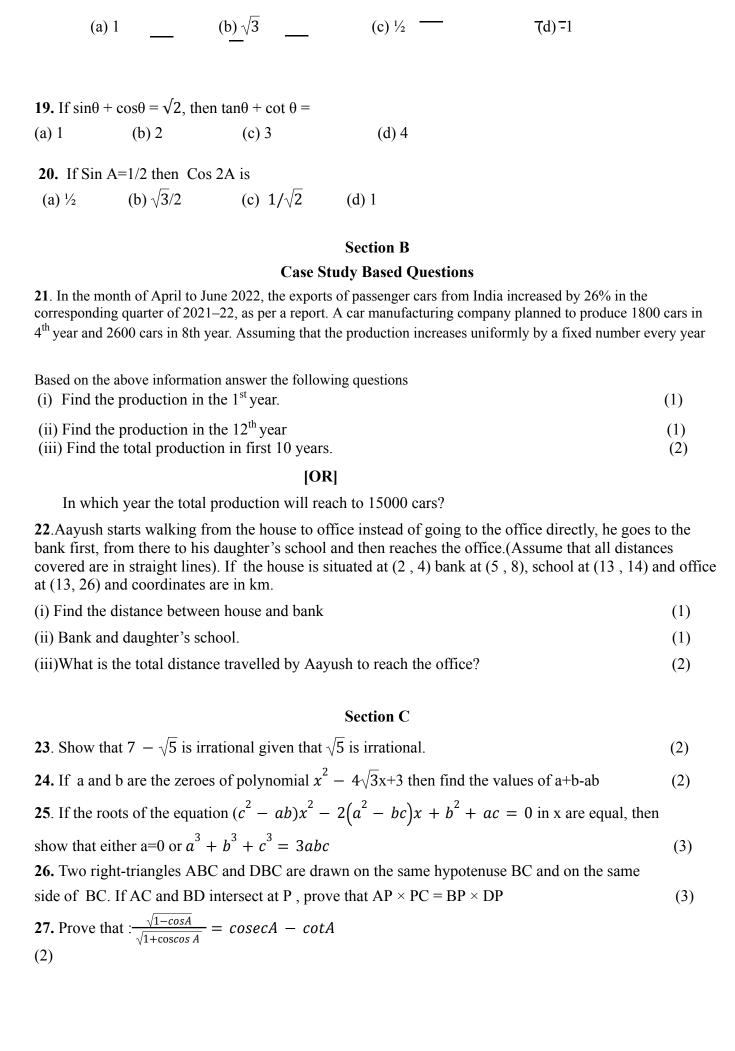
KENDRIYA VIDYALAYA SITAPUR PT2 2023-24

MATHEMATICS, CLASS :X

TIME $1\frac{1}{2}$ Hrs Max. Marks: 40


SECTION A

Section A	consists	of 20	questions	of 1	mark	each
		U1 4U	questions	VI I	man	Cacii

1.		that is divisible by	all the number					
•	` /	(b) 100	(c) 504	٠,	(d) 2520			
2.		mallest prime and (b) 2	smallest com (c) 3	posite nun	nber is (d) 4			
3.	· /	e zeros of a polyno	\ /	$6x^2 - 2x + 3$	· /	$\beta = \alpha \beta$, then	p is	
		(b) 2/3	(c) $1/3$		(d) -1/3	1 17	1	
4.	A quadratic poly	ynomial whose zer			2			
	$(a)x^2 - x + 12$	2	(b) $x^2 +$	x + 12	(c) $\frac{x^2}{2}$ -	$\frac{x}{2} - 6$	(d)	
$2x^2$	+ 2x - 24				L	L		
		equations $3x+y=1$	1 and (2k-1)x	+(k-1)y =	2k+1 is inc	consistent, th	en k =	
	(a) -1	(b) 0	(c) 1	()3	(d) 2	,		
6 .	The pair of equa	ations $x+2y+3=0$ a	nd -3x-6y+1=	= 0 have				
	(a) a unique solution (b) exactly two solutions							
	(c) infinitely ma	-		(d) no sol				
7.		for which the equa		=0 and 6x-		epresent coin	icident lines is	
_	(a) - 1/2	` /	(c) 2		(d) -2			
8.		ne number. The qu	-	_		-		
		0 (b) $x^2-(p+1)x^2$					p+1=0	
9.	if $\frac{1}{2}$ is a root of	the equation x^2 +	$-kx-\frac{3}{4}=$	0 then the	value of k	is		
	(a) - 1/2	(b) $\frac{1}{2}$	(c) 2		(d) -2			
10.	If the quadratic	equation $x^2 + 4x$	+ k = 0 has re	al and equ	al roots, th	en		
	(a) $k < 4$	(b) $k > 4$	(c) $k = 4$	4	(d) $k \ge 4$			
11.	. The sum of first	t five multiples of	3 is					
	(a) 45				(d) 75			
12	2. 30^{th} term of the	e A.P. 10,7,4,	. Is					
	(a) 97	(b) 77	(c) -77		(d) -87			
13	. ΔABC~ΔPQR	. If AM and PN ar	e altitudes of	ΔABC and	d ΔPQR re	spectively ar	nd	
	AB^2 : $PQ^2 = 4$: 9, then AM: PN	=					
	(a) 3:2	(b) 16:81	(c) 4:9		(d) 2:3			
14	. If in two triang	gles ABC and PQI	$R \frac{AB}{OR} = \frac{BC}{PR}$	$=\frac{CA}{PO}$ then	ı			
	(a) $\Delta PQR \sim \Delta C$	$^{\prime}AB$ (b) $\Delta PQR \sim R$	ΔABC	(c) $\triangle CBA$	$\sim \Delta PQR$			
15	5. If the vertices	of a parallelogran	n PQRS taker	n in order a	are $P(3,4)$,	Q(-2,3) and 1	R(-3,-2),	
		dinates of its fourt						
1.	(a) (-2,-1)	(b) (-2,-3 of a triangle with) (((0,-1)	1 (2 0) :-	d) (1,2)		
10	o. The perimeter of	of a triangle with	vertices (0, 4)	0, (0, 0) and	1 (3, 0) 1S			
	(a) 5 units	(b) 12 ı	ınits	(c) 11	units	(d)	$(7 + \sqrt{5})$ units	
17	7. In which ratio	the y-axis divides	the line segm	ent joining	g the points	(5, -6) and	(-1, -4)?.	
	1	,	J	, ,	. 1			
	(a) 1:5	(b) 5:1	1	(c) 1 :	: 1	(d)	1:2	
	(4) 1 • 5	(0) 3 •		(0) 1 •		(u)	- • -	

18. $\sqrt{3} \cos^2 A + \sqrt{3} \sin^2 A$ is equal to

1

