KAPSABET HIGH SCHOOL

121/1 **MATHS** Paper 1 Time: 2 1/2 hours

2021 TRIAL 3 OCT/NOVEMBER INTERNAL EXAMINATION

Kenya Certificate of Secondary	y Education (K.C.S.E.)
Name	Adm No
Stream	Date
Sign	
	GRAND TOTAL
MATHEMATICS PAPER 1 OCT/NOVEMBER- 2021 TIME: 2½ HOURS	
Mathematic	es

Paper 1 $2^{1}/_{2}$ hours

INSTRUCTIONS TO THE CANDIDATES

- This paper contains two sections; Section I and Section II.
- Answer all the questions in section I and only five questions from Section II.

Page **1** of **16**

- All workings and answers must be written on the question paper in the spaces provided below each question.
- Non programmable silent electronic calculators and KNEC Mathematical tables may be used EXCEPT where stated otherwise.
- Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.

FOR EXAMINER'S USE ONLY

Section 1

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total
Marks																	

Section 1I

Question	17	18	19	20	21	22	23	24	Total
Marks									

SECTION I (50MKS)

1. A rally car travelled for 2 hours 40 minutes at an average speed of 120km/h. the car consumes an average of 1 litre of fuel for every 4 kilometers. A litre of fuel costs Ksh.59. Calculate the amount of money spent on fuel. (3mks)

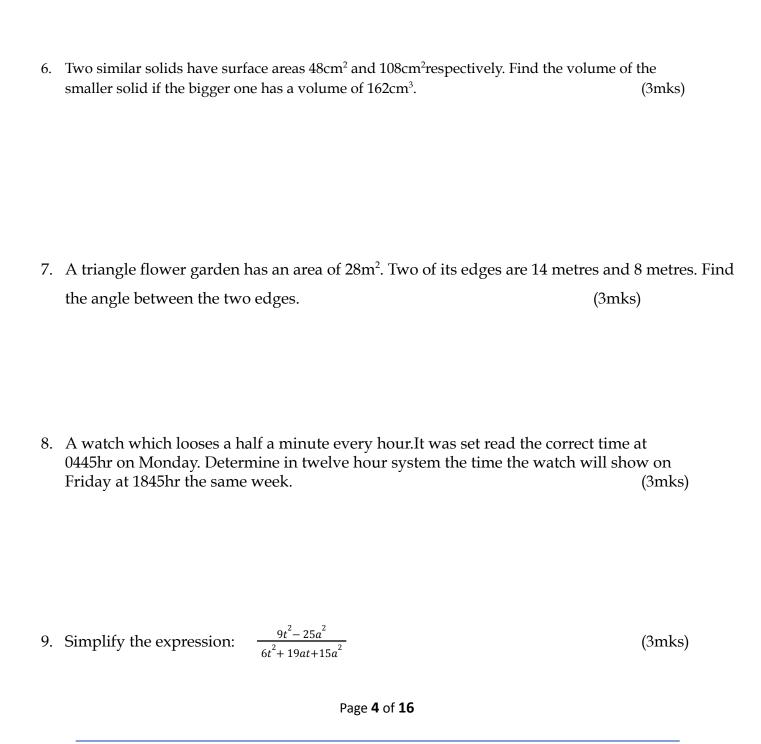
2. One interior angle of a polygon is equal to 80° and each of the other interior angles are 128° . Find the number of sides of the polygon. (3mks)

3. (a) Using a pair of compasses and a ruler only construct a triangle ABC and such that Page **2** of **16**

AB = 4cm	BC = 6cm	and anole	ABC=135°.
AD TCIII,	DC OCIII	and angle	11DC 133.

(2mks)

- (b) Construct the height of triangle ABC in (a) above taking AB as the base, hence Calculate the area of triangle ABC. (2mks)
- 4. Solve the following inequalities and state the integral values $2x 2 \le 3x + 1 < x + 11$


(3mks)

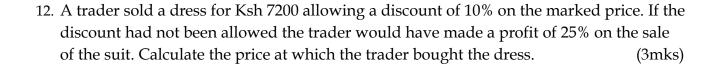
(3mks)

5. Without using mathematical tables or calculators, **evaluate** your answer as a simplified fraction

 $\sqrt{\frac{1408 \times 0.594 \times 0.012}{6.05 \times 125}}$ leaving

Page **3** of **16**

10	T To o			1	1		4-1-1	۱.	1	
IU.	use	recij	procai	ana	cube	root	tables	το	evai	uate

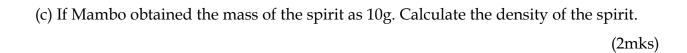

$$\frac{5}{63.34} - \sqrt[3]{0.0169}$$

11. A Kenya company received US Dollars M. The money was converted into Kenya Shillings in a bank which buys and sells foreign currencies.

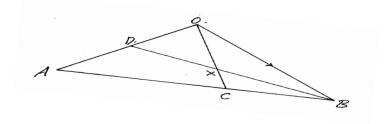
Buying (in Ksh) Selling (in (Ksh)

1 Sterling Pound 125.78 126.64 1 Us Dollar 75.66 75.86

- (a) If the company received Ksh.15, 132,000, calculate the amount, M received in US Dollar. (2mks)
- (b) The company exchanged the above Kenya shillings into Sterling pounds to buy a car in Britain. Calculate the cost of the car to the nearest Sterling pound (2mks)


13. Use logarithms tables to evaluate.

(4mks)


$$\sqrt[3]{\frac{36.72 \times (0.46)^2}{185.4}}$$

14. A certain two-digit number is equivalent to five times the sum of the digits. It is to be 9 less than the number formed when the digits are interchanged. Find the	
number.	(3mks)
	1
15. A man standing 20m away from the foot of a vertical pole observes the top of the angle of elevation of 30°. He begins to walk along a straight line on level ground the pole. Calculate how far he walked before the angle of elevation of the top of becomes 80°.	l towards
16. Find the acute angle y if sin 4y = cos 2y	(2mks)
Page 7 of 16	
KAPSABET BOYS HIGH SCHOOL	

<u>SECTION B (50MKS)</u>	
17. Mambo poured spirit into a test tube which has hemispherical bottom of in	ner radius 1.5cm.
He noted that the spirit is 8cm high.	
(a) What is the area of surface in contact with spirit?	(4mks)
(b) Calculate volume of spirit in the test tube.	(4mks)
Page 8 of 16	

18. The figure below C is a point on AB such that AC: CB=3:1 and D is the mid -point of OA. OC and BD intersect at X.

Given that OA = a and OB = b

(a) Write the vectors below in terms of ${\bf a}$ and ${\bf b}$.

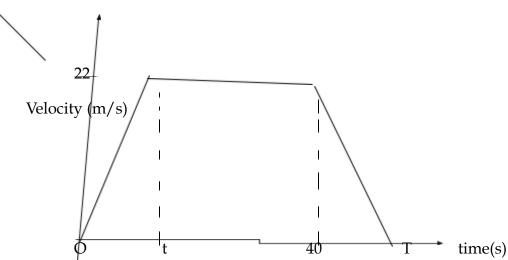
$$(i) AB (1mk)$$

$$(iii) BD (1mk)$$

(b) If
$$BX = h BD$$
, express OX in terms of a , b , and h . (1mk)

(c) If
$$OX = KOC$$
, find h and k. (4mks)

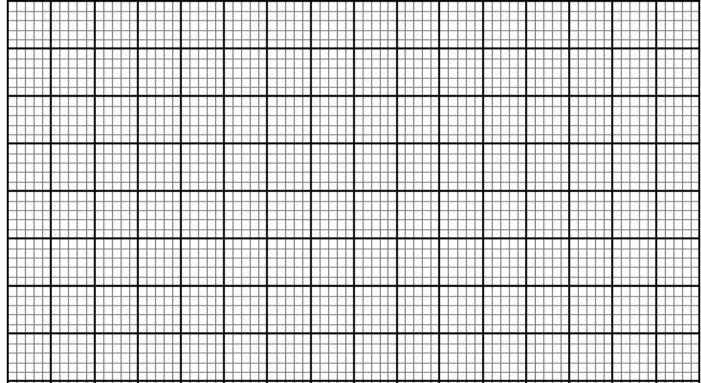
Page **9** of **16**


	(d) He	ence express OX in terms of a and b only.	(1mk)
19		hight line L_1 has a gradient $^{-1}/_2$ and passes through point P (-1, 3). Another L_1	ine L ₂ passes
		gh the points Q (1, -3) and R (4, 5). Find.	
	(a)	The equation of L_1 .	(2mks)
	(b)	The gradient of L_2 .	(1mk)
	(c)	The equation of L_2 .	(2mks)
		Page 10 of 16	

	(d) Th	e equation of a line passing through a point S (0, 5) and is perpendicular	to L ₂ .
			(3mks)
	(o)	The equation of a line through R parallel to I	(2mks)
	(e)	The equation of a line through R parallel to L_1 .	(ZIIIKS)
20.		ain number of people agreed to contribute to buy novels worth sh. 1200.	
		out and the others agreed to contribute an extra Sh. 10 each. Their contributes worth sh.200 more than they originally expected.	bution brought
	HOVEIS		
	a)	If the original number of people was x, write an expression of how mu to contribute.	ch each was (1mk)
		to contribute.	(IIIIK)
	b)	Write down two expressions on how much each contributed after the	
		out and reduced them to a single equation.	(2mks)
	c)	Calculate how many people made the contribution	(5mks)
		Page 11 of 16	

d) How much did each contribute?	(2mks)
21. (a) In 2001 the total cost of manufacturing an article was Sh.1250 and the cost of material, labour and transport in the ratio 8: 14: 3. In 2004 was doubled, labour cost increased by 30% and transport costs increased calculate the cost of manufacturing the article in 2004.	the cost of the material

(b) For the same article in (a) above, the cost of manufacturing in 2005 was sh. 1981 as a result of increase in labour costs only. Find the percentage increase in labour cost of 2004. (4mks)


22. The figure below shows a velocity - time graph of a car journey.

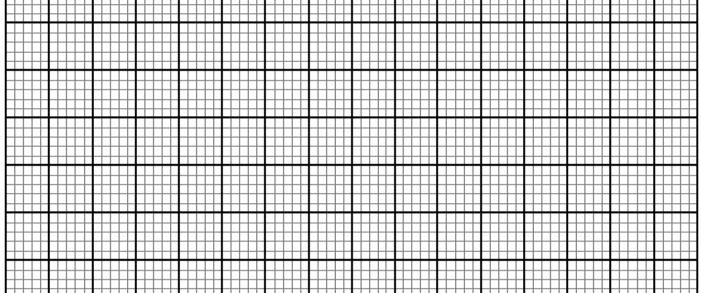
The car starts from rest and accelerates at 2.75m/s² for t seconds until its speed is 22m/s. It then travels at this velocity until 40 seconds after starting. Its breaks bring it uniformly to rest. The total journey is 847m long and takes T seconds.

Page 13 of 16

Calculate the (i) Value of t	(3mks)
(ii) Distance travelled during the first t seconds	(2mks)
(iii) Value of T	(3mks)
(iv) Final deceleration 23. A triangle with A(-4, 2), B(-6, 6) and C(-6, 2) is enlarged by a scale factor -1 a	(2mks) and centre (-2, 6)
to produce triangle A ¹ B ¹ C ¹ . a) Draw triangle ABC and A ¹ B ¹ C ¹ .and state its coordinates	(4mks)

b) Triangle AIRICI is then reflected in the line $x = x$ to give triangle AIIRICII draw AIIR	11 <i>C</i> 11 and
b) Triangle $A^1B^1C^1$ is then reflected in the line $y = x$ to give triangle $A^{11}B^{11}C^{11}$.draw $A^{11}B$ state its coordinates	3mks
c) If triangle $A^{11}B^{11}C^{11}$ is mapped onto $A^{111}B^{111}C^{111}$ whose co-ordinates are $A^{111}(0, -2)$, and $C^{111}(0, -4)$ by a rotation. Find the centre and angle of rotation.	B ¹¹¹ (4, -4) (3mks)
Page 15 of 16	
KAPSABET BOYS HIGH SCHOOL	

24. The following are masses of 25 people taken in a clinic.


20	35	29	45	60
66	56	29	48	37
59	64	24	28	32
35	45	48	52	55
54	55	36	39	35

(a) Using a class width of 8 and starting with the lowest mass of the people. Make a frequency distribution table for the data. (3mks)

(3mks)

(b) Calculate the median mass of the people.

(c) On the grid provided, draw a histogram to represent the information. (4mks)

