
Биологическая роль важнейших неметаллов

При рассмотрении значения для живых орга низмов отдельных элементов будет обсуждена роль элемента и его соединений как в качестве составляющей части живого организма, так и в роли лекарственных средств, а также отрицательное (токсическое) действие некоторых простых веществ и соединений элемента на организм.

Кислород

КИСЛОРОД В ПРИРОДЕ

ЗЕМНАЯ КОРА ВОЗДУХ МОРСКАЯ ВОДА ОРГАНИЗМ ЧЕЛОВЕКА

Рис. 1. Содержание кислорода и других элементов в земной человека (в % по массе)

Диаграммы, на которых представ лено а сравнении содержание кислорода и некоторых других элементов в земной коре, воздухе, морской воде и организме человека, даны на рис. 1. Надо отметить, что биогеохимические (экологи ческие) циклы кислорода и углерода тесно переплетаются, так что вернее рассматривать их общий экологический цикл, который представлен в школьных таблицах по биологии.

Кислород входит в состав всех жизненно важных органических веществ: белков, жиров, углеводов и др. Без кислорода невозможны многочисленные и чрезвычайно важные жизненные процессы, например дыхание, окисление аминокислот, жиров, углеводов. Только немногие растения и простейшие животные могут обходиться без кислорода и поэтому носят название анаэробных.

Поступая в кровь высших животных, кислород соединяется с гемоглобином, образуя оксигемоглобин. С током крови это соединение поступает в капилляры, где легко диссоциирует, выделившийся кислород проникает через стенки капилляров в ткани, В тканях кислород расхо дуется на окисление различных веществ. Эти реакции приводят в конечном счете к образова нию воды, CO_2 и созданию запаса энергии.

Защитные функции организма (фагоцитарные функции) связаны с наличием кислорода. В фа гоцитах (клетках, способных захватывать и пере варивать посторонние вещества) кислород O_2 восстанавливается до супероксид-иона O_2^- : O_2^- + $e^ \in O_2^-$ Этот ион является свободным радика лом, содержит 1 неспаренный электрон. Он ини циирует цепные процессы окисления инородных органических веществ, захваченных фагоцитами. При недостатке кислорода в окружающем возду хе его содержание в организме соответственно уменьшается, процессы образования супероксид-радикала и окисления им инородных веществ замедляются, в результате чего сопротивляемость организма к инфекции падает.

Обычное содержание кислорода в воздухе (око ло 21 % по объему) создает необходимое пар циальное давление кислорода, благодаря которо му ткани через легкие и кровь насыщаются кислородом. Снижение в воздухе содержания кис лорода до 16—18 % (об.) не оказывает сущест венного влияния на жизнедеятельность. При сни жении содержания О2 до 14 % (об.) появляются признаки кислородной недостаточности, а сниже ние до 9 % (об.) очень опасно для жизни. Состав лечебных ингаляционных смесей, содержащих кислород, зависит от цели лечения. Так, для насы щения тканей кислородом применяют его смеси с воздухом, содержащие 40—60 % (об.) кисло рода. При отравлении СО и кислотными газами для лечения применяют смеси О2 и СО₂, содер жащие до 5 % (об.) СО₂ для подкисления тка ней. В анестезиологической практике кислород применяют в смеси с ингаляционными наркоти ками. В медицинской практике используется ги пербарическая оксигенация в барокамерах (боль ного помещают в барокамеру, где создается по вышенное давление кислорода). Этот метод лече ния улучшает кислородное насыщение тканей, защищает головной мозг от гипоксии (т. е. по ниженного содержания кислорода), с его по мощью лечат ожоги и диабетические язвы

Озон.

Для человека озон ОЗ сильно токсичен. Его предельно допустимая концентрация (ПДК) в воздухе составляет 0,5 мг/м³. .Кроме того, озон крайне взрывоопасен даже в низких концентра циях. Токсичность озона усугубляется тем, что существует «привыкание» к запаху озона. Обезза раживающее действие озона связано с интенсив ным образованием им супероксид-радикалов, ко торые быстро разрушают оболочки клеток. Дейст вие озона очень эффективно при дезинфекции воды.

Водород.

Вода — важнейшее соединение водо рода в живом организме. Основные функции воды следующие:

- 1. Вода, обладающая высокой удельной теплоемкостью, обеспечивает поддержа ние постоянства температуры тела. При перегре ве тела происходит испарение воды с его поверх ности. Из-за высокой теплоты парообразования этот процесс сопровождается большими затра тами энергии, в результате чего температура те ла понижается. Так поддерживается тепловой ба ланс организма.
- 2. Вода важная среда орга низма. Широко используемый в медицине физио логический раствор это 0,9 % ный. Водный раствор поваренной соли. 3. Вода поддерживает кислотно-основное равновесие организма. Боль шинство тканей и органов в основном состоят из воды. Соблюдение общего кислотно-основного баланса в организме не исключает больших различий в значениях рН для разных ор ганов и тканей.

Важным соединением водорода является пероксид водорода H2O2 (традиционное название - перекись водорода). H_2O_2 аналогично супероксид-радикалу окисляет липидный слой мембран кле ток, разрушая его. При обработке небольших ран 3 % - ным раствором H_2O_2 выделяется кисло род (из-за слабого подкисления H_2O_2 за счет кро ви, рН которой 6,8). При этом образуется, пена. Частицы тканевого распада благодаря этой пене переходят во взвешенное состояние и вымывают ся из раны. Кровоостанавливающее действие H_2O : по-видимому, тоже связано с образованием пены и закупоркой мелких сосудов, в результате чего кровотечение останавливается. Сильное кро вотечение остановить с помощью H_2O нельзя.

Сера. В земной коре сера находится в виде сульфидов, полисульфидов, сульфатов, самород ной серы. В биосфере сера образует соединения, содержащие, аналогично полисульфидам, полисерные мостики S—S; в состав белков сера вхо дит в виде групп SH, связанных с атомами С. В желудке присутствуют также сульфаты щелоч ных металлов.

Белковые ткани способны - поглощать избыток супероксид-радикалов O_2^- и препятствуют дальнейшему разрушению тканей. Группы SH бел ка при этом переходят в группы —S—S—H. Многие серосодержащие вещества применяют в качестве лекарственных средств. Так, S^0 в виде взвеси в воде применяют при отравлении цианидами (ионами CN^-), так как S° переводит токсичные цианиды в менее токсичные роданиды SCN^- . Тиосульфат натрия — $Na_2S_2O_3$ - важнейшее противоядие (антидот) по отношению к попавшим в организм тяжелым металлам. Сульфаты метал лов также имеют широкое применение: $Na_2SO_4*10H2O$ (глауберова соль) используют как слабительное и желчегонное средство; сульфат маг ния $MgSO_4*7H_2O$ — как гипотензивное (пони жающее давление) средство; обезвоженный («жженый») гипс $CaSO_4$

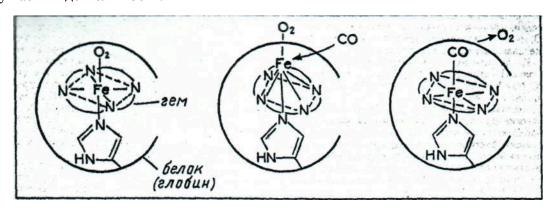
применяют для фикса ции костей при переломах; $BaSO_4$ служит рентгеноконтрастным веществом, так как барий сильно поглощает рентгеновские лучи.

Газообразные соединения серы — H_2S и SO_2 — высокотоксичные вещества. Вредное действие сероводорода H2S заключается в том, что он ингибирует фермент цитохромоксидазу, ответствен ный за перенос электронов в дыхательной цепи, и попадание H_2S в организм нарушает дыхатель ный цикл. Сернистый газ SO_2 взаимодействует с влагой, слизистой оболочки глотки и гортани, раздражает их за счет возникновения кислой сре ды, что может вызвать даже отек этих тканей. Особый экологический вред приносят «кислотные дожди» при интенсивных выбросах SO: промыш ленных предприятий. Эти дожди вызывают ненуж ное подкисление почв, питьевой воды, вредно действуют на кожу, волосы, ногти.

Азот. Азот присутствует в живых организмах в виде многочисленных органических соединений: аминокислот, пептидов, пуриновых оснований, входящих в состав ДНК, а также в виде сво бодного N_2 поступает в организм с вдыхаемым воздухом. Круговорот азота в природе тесно связывает геосферу и биосферу, подчеркивая их единство, и является основой и отражением про цесса обмена веществ— метаболизма.

Важная проблема неорганической химии, а точнее — координационной химии, состояла в объяс нении процесса связывания атмосферного азота в природе. (Такое объяснение было найдено только в 60-х гг. XX в.)

Неорганические соединения азота, как пра вило, токсичны, за исключением самого просто го вещества N_2 . Так, оксиды азота NO_2 и N_2O_3 действуют подобно SO_2 и способны вызвать удушье и отек легких. Нитрит-ион NO_2^- особен но токсичен, потому что он окисляет метгемоглобин и нарушает процесс переноса O_2 в организ ме. Токсичность NO_2^- проявляется еще и в том, что он образует в желудке канцерогенный нитрозоамин. Ранее в незначительных количествах $NaNO_2$ применяли как сосудорасширяющее сред ство при стенокардии и спазмах сосудов голов ного мозга. В последнее время от использова ния для этих целей $NaNO_2$ отказались, заменив его нитроглицерином, который не имеет вредных побочных эффектов. Оксид азота $(I) - N_2O$ — безвреден и в небольших концентрациях прояв ляет наркотическое действие, что позволяет при менять его для краткосрочного наркоза.


Вдыхание паров аммиака NH_3 вредно для чело века. Во-первых, ион NH^{4+} создает достаточно сильную щелочную среду на слизистой оболочке глотки, гортани, легких, что вызывает их раздра жение и отек. Во-вторых, молекулы NH_3 , не большие по размеру, легко проникают через кле точные мембраны и становятся конкурентами мно гим биолигандам в координации с ионами метал лов. Это вызывает тяжелые заболевания, часто необратимого

характера. В небольших количест вах NH₃ применяют для возбуждения дыхатель ного центра при потере сознания. Нитраты щелоч ных металлов нашли полезное применение в ка честве стимуляторов роста плодов у. растений, а также в качестве консервантов белковой пищи (мяса, колбас и т. д.).

Фосфор. По содержанию в организме человека (0,95 %) фосфор относится к макроэлементам. Фосфор — элемент-органоген и играет исключи тельно важную роль в обмене веществ. Он вхо дит в состав скелета животных (ортофосфат кальция $Ca_3(P0_4)_2$, гидроксиапатит $3Ca_3(PO_4)2XCa(OH)_2\Gamma$), в состав зубов (гидроксиапатит, фторапатит $3Ca_3(PO_4)_2*CaF_2$). В форме собой необходимый компонент внутриклеточной фосфата фос фор представляет аденозинтрифосфорной кислоты (АТФ). Фосфор входит в состав белков, нуклеи новых кислот, нуклеотидов и других биологически активных соединений. Гидролиз АТФ сообщает организму необходимый для жизнедеятельности запас энергии. Фосфатная буферная система: Na₂HPO₄ + NaH_2PO_4 с pH = 7.4 — основная бу ферная система плазмы крови. Сахара и жирные кислоты могут быть использованы организмом в качестве источника энергии только при предвари тельном фосфорилировании, т. е. присоединении групп НхРО₄. Надо отметить, что обмен фосфора в организме тесно связан с обменом кальция; эти два биоцикла представляют собой вместе важ ную составляющую метаболизма в целом.

Ожоги горящим фосфором крайне опасны, так как образующийся при горении оксид P_2O_5 вызы вает ожог прежде всего за счет большого коли чества тепла, выделяющегося при реакции P_2O_5 с влагой кожи. Образующаяся кислота H_3PO_4 проникает в глубь соединительной ткани, что приводит к отеку из-за прилива внеклеточной жидкости.

Углерод. Углерод по своему значению для жи вых организмов — органоген № 1. Однако и сво бодный углерод в виде сажи, и его монооксид СО токсичны для человека. Длительный контакт с сажей или угольной пылью вызывает рак кожи («болезнь трубочистов», как ее называли рань ше). Мельчайшая угольная пыль вызывает из менение структуры легких, нарушает их деятель ность.

Рис. 2. Схема конкурентных процессов с участием молекул CO и O2 в геме

Очень токсичен монооксид углерода CO, отрав ляющее действие которого вызвано тем, что CO легко соединяется с гемоглобином крови и де лает его неспособным переносить кислород от легких к тканям (рис. 2). Это происходит пото му, что молекула CO очень схожа с молекулой O_2 по электронному строению и обладает боль шим, чем O_2 , сродством к иону Fe^{2+} , находя щемуся в порфириновом кольце гемоглобина. Как уже говорилось, при отравлении CO в ка честве антидота применяют смесь CO_2 3—5 % (об.) и O_2 , называемую карбогеном. Высокое парциальное давление O_2 в этой смеси позво ляет вытеснить CO из тканей, а роль CO_2 сво дится к подкислению крови, а также к воздейст вию повышенного парциального давления CO_2 на равновесие $CO_2 = CO_2$, в результате че го происходит вытеснение CO из крови.

Гидрокарбонат натрия NaHCO₃ входит в одну из буферных систем организма (pH=7,8—8,0), например в желчном пузыре, где щелочная среда способствует гидролизу жиров. Медицинские препараты на основе карбонатов (CaCO₃ и питье вая сода NaHCO₃) обладают антиацидным (противокислотным) действием и применяются для снижения кислотности желудочного сока.

Кремний. Кремний относится к так называемым примесным элементам; его содержание в орга низме человека крайне мало и составляет 10 %. Кремний обнаружен в печени, надпочечниках, волосах и хрусталике глаза. Так как наиболее распространенное соединение кремния — диок сид SiO_2 — практически не растворим в воде, то в организм человека кремний поступает только через вдыхаемый пылеобразный SiO_2 . При повы шенном содержании пыли SiO_2 в воздухе (в шах тах, на некоторых химических предприятиях, свя занных с переработкой силикатов, на стекольных заводах) возникает тяжелое заболевание лег ких — силикоз. При этом заболевании частицы SiO_2 образуют в легких гель SiO_2 *х H_2O_3 , который выстилает внутреннюю поверхность легких, ли шая их подвижности.

Хлор. Основной формой нахождения хлора в ор ганизме является поваренная соль NaCI, посту пающая с пищей. Ионы C1⁻ играют важную биологическую роль. Они активируют некоторые ферменты, создают благоприятную среду для действия протолитических ферментов желудочно го сока, обеспечивают ионные протоки через кле точные мембраны, участвуют в поддержании осмотического равновесия.

Хлорид натрия — основа физиологического раствора, на котором приготовляют

многие водорастворимые лекарства. По составу физиологи ческий раствор — это 0,9 %-ный, или 0,154 М раствор NaCI. В среде физиологического раствора проводятся все опыты с биологически активными веществами.

В желудке в состав желудочного сока входят катионы H^+ , Na^+ , K^+ и анионы Cl^- , $H_2PO_4^-$ и $HSO4^-$, но концентрация Cl^- существенно выше, чем остальных ионов. Поэтому говорят, что в же лудке содержится соляная кислота (ее массовая доля составляет около 0,3%). Для выработки в желудке соляной кислоты необходим NaCl. Из венозной крови в желудок -поступает CO_2 , и протекает ферментативная реакция:

 $CO_2+H_2O+C1^{-}\rightarrow HCln(желудок) + HCO_3^-$ (кровь). На первый взгляд, кажется странным, что слабая кислота (H_2CO_3) «вытес няет» более сильную — HC1. Однако не надо забывать, что эта реакция ферментативная, при чем необходимый фермент катализирует ее про текание в сторону образования HC1.

Молекулярный хлор $C1_2$ обладает сильным дезинфицирующим действием за счет своих окислительных свойств. Таким же действием обладают хлорная вода и хлорная известь $CaOC1_2$. Действие этих агентов основано на том, что в водных растворах этих веществ кислая среда, в которой денатурируют (свертываются) белки, а кроме то го, по реакции $C1_2$ с H_2O и при гидролизе $CaOC1_2$ в присутствии CO_2 образуется сильный окисли тель — хлорноватистая кислота — HCIO. Эта кислота на свету разлагается на HC1 и атомар ный кислород O, который также является силь ным окислителем, разрушает структуры клеток, и микроорганизмы погибают.

Биологическая роль важнейших биометаллов

Как уже было сказано, бионеорганическая химия в настоящее время является фактически биокоординационной химией, так как металлы (как эндогенные, так и экзогенные) в живом ор ганизме, как правило, находятся в виде комп лексных (координационных) соединений. Биолиганды самых разных типов имеют обширный набор разнообразных донорных атомов, т. е. атомов, содержащих неподеленную электронную пару): О, N, S и др., с которыми большинство .ионов металлов образуют координационные связи.

К биологически наиболее значимым (био генным) металлам обычно относят следующие 10: К. Na, Mg, Ca, Fe, Cu, Co, Mn, Zn, Mo. Содер жание их в организме различно: К, Na, Mg и Ca существенно больше, чем остальных биометаллов. Многие другие металлы, кроме 10 упомянутых, проявляют биогенные свойства.

Ионы биогенных металлов проявляют различ ные свойства, определяемые их

положением в пе риодической системе, типом электронной оболоч ки, размером радиуса, характером поляризуе мости и др. Биологические функции металлов также существенно различаются. Так, ионы ще лочных металлов, менее всех других склонные к образованию координационных соединений, участвуют в создании электролитной среды ор ганизма, определяют процессы всасывания ве ществ в органах и тканях. Ионы Ca²⁺ образуют плохорастворимые соединения, входящие в «не сущие» системы организма: скелет, хрящи, зубы. Легко гидролизующиеся металлы: Мо, Zn — участвуют в реакциях ферментативного гидролиза. Металлы, обладающие переменной валентностью и проявляющие переменные координационные числа: Мо, Cu, Fe,— активно участвуют в много численных окислительно-восстановительных про цессах. Большинство из биогенных металлов про являют сильные координационные свойства.

S-элементы: натрий, калий, кальций, магний. Ионы Na⁺ и K⁺ определяют равновесие электролита между внутриклеточным и внеклеточным пространством (рис. 3). Натрий — внеклеточный элемент, его концентрация вне клетки в 15 раз больше, чем внутри ее. Наоборот, калий — внутриклеточный металл с концентрацией, внутри клетки в 35 раз большей, чем вне нее. Ионы Na⁺ и K⁺ непрерывно движутся через клеточные мембраны по ионным протокам в обоих направлениях, причем K⁺ преимущественно стремится в клетку, а Na⁺ выходит из нее. Оба иона двигаются против градиента концентраций, т. е. из области меньших концентраций в сторону больших. Самопроизвольно такой процесс проис ходить не может, и поэтому энергию ему сооб щает реакция гидролиза АТФ.

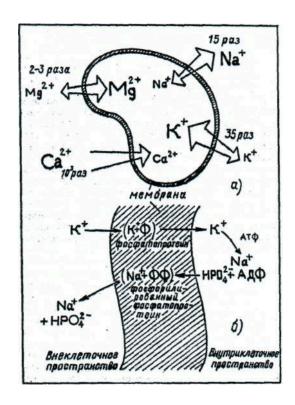


Рис. 3. Элементы-металлы К, Na, Mg и Са внутри клетки и вне ее (a). Схема прохождения ионов Na+ и K⁺ через мембрану клетки (б)

Калий проникает внутрь клетки за счет сродст ва к белку мембраны фосфатопротенну, кото рый проводит калий через мембрану внутрь клетки. В клетке происходит гидролиз АТФ с образованием АДФ (аденозиндифосфорной кислоты), выделяющаяся группа РО4³⁺ фосфолирует фосфатопротеин, и он отпускает ион калия, который в результате этого оказывается внутри клетки. Фосфорилированный фосфатопро теин обладает, в свою очередь, повышенным срод ством к иону натрия, захватывает его и уходит с ним через мембрану наружу, где отпускает ион Na⁺ на свободу во внеклеточное пространство. Так работает натрий-калиевый насос, основной задачей которого является поддержание натрий-калиевого баланса во всех тканях организма.

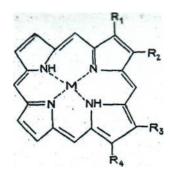
Какие же процессы обусловлены постоянной концентрацией Na⁺? Это, во-первых, поддержа ние нужного осмотического давления биожид костей, обеспечивающего процессы всасывания питательных (а также и токсичных) веществ; во-вторых, поддержание на необходимом для жизнедеятельности организма уровне значений рН различных биожидкостей. Натрии и калий играют важнейшую роль в передаче по нервным волокнам нервных импульсов. Калий отвечает за сокращение мышц, особенно сердечной мышцы. Соли натрия и калия могут быть токсичны для организма исключительно за счет связанного с ними аниона: КСN, NaNO₂ и др. Многие лекарственные препараты готовят в виде натриевых и калиевых солей, так как соли

этих металлов с большинством биолигандов хорошо растворимы.

Магний и кальций. Роль магния и кальция в целом — это образование оболочек клеток различных тканей и органов и связывание от дельных субъединиц (фрагментов биополимеров) в структуры. Магний, в отличие от кальция, не играет такой большой роли в формировании скелета, вероятно, из-за того, что его фосфаты и основные карбонаты лучше растворимы, чем аналогичные соединения кальция. Магний — бо лее сильный комплексообразователь, чем каль ций (у иона Mg²⁺ меньше радиус, чем у иона Ca²⁺), и поэтому ион Mg²⁺ катализирует мно гие ферментативные процессы, в том числе гидро лиз АТФ. Магний входит в координационный центр хлорофилла (рис. 5) — важнейшего вещества растительного мира, благодаря которому осуществляется процесс фотосинтеза.

Содержание кальция в организме человека — 1 %. Кальций содержится в каждой клетке жи вого организма; основная масса кальция нахо дится в костной и зубной тканях в виде гидроксиапатита $3Ca_3(PO_4)_2*Ca(OH)_2$ и фторапатита $3Ca_3(PO_4)_2*CaF_2$. В среднем взрослый человек должен потреблять в сутки около 1 г кальция, хотя для постоянного возобновления структуры тканей нужно лишь 0,5 г. Это связано с тем; . что ионы Ca^{2+} усваиваются (всасываются в ки шечнике) лишь на 50 %, так как образуются плохо растворимые фосфаты $Ca_3(PO_4)_2$, $CaHPO_4$ и соли жирных кислот $Ca(RCOO)_2$.

Концентрация кальция в организме регули руется гормонами паращитовидных желез, а ус воение определяется содержанием в организме витамина D. Недостаток этого витамина приводит к снижению всасывания кальция и проявляет ся в виде заболевания — рахита. В стенках сосудов и артерий кальций находится в виде кар боната CaC_3 , а в почках — в виде оксалата CaC_2O_4 .


Образование почечных камней связано как раз с образованием нерастворимых солей каль ция и магния: оксалатов, уратов (солей моче вой Кислоты) и др. При недостаточном функцио нировании фермента ксантиноксидазы, содержа щего молибден и превращающего пуриновые азотсодержащие основания в мочевую кислоту, локально возрастает концентрация уратов. Они обладают свойством отлагаться и концентриро ваться в суставной жидкости, в хрящах, умень шая их подвижность и вызывая заболевание — подагру. Ионы Ca²⁺ принимают активное участие в сокращении мышечных волокон. Некоторые неорганические соли кальция применяются в ме дицине: CaCl₂ (в виде раствора), гипс CaSO₄.

d-элементы. Как было сказано выше, отличи тельными чертами этих элементов являются склонность к гидролизу, легкое изменение коор динационного числа и связанного с

этим стереохимического окружения (т. е. природы окру жающих ион металла лигандов и пространст венного расположения их донорных атомов), а также проявления различных степеней окисления. d — элементы ведут себя в живом организме, как «организаторы жизни», хотя роль их во мно гих процессах еще далеко не выяснена.

Марганец. Радиус иона Mn^{2+} (52 пм) близок к радиусу Mg^{2+} (65 пм). Как и ион магния, ион марганца способен образовывать комплексы с О- и N-содержащими лигандами. Марганец при нимает участие в некоторых окислительно-вос становительных процессах: входит в качестве ак тивного центра в состав ферментов пероксидазы и *о*-аминофенолоксидазы (т. е. участвует в реакциях, связанных с превращением кисло рода в организме).

Железо. Физиологическая роль железа связана с его способностью образовывать различные комплексные соединения с молекулярным кислородом, с донорными атомами кислорода, азота, серы, селена. Проявляя степени окисления +2, + 3 с координационными числами 4 и 6, железо очень мобильно в своих соединениях, легко пере ходя от одного характера координации лиганда к другому. По химической структуре соединения железа в организме можно подразделить на гемовые (гемоглобин, рис. 5, миоглобин и др.) и негемовые (рис. 6, ферритин, сидерофилин).

гемоглобин: $M = Fe_1R_1 = R_3 = CH_3$, $R_2 = CH_2 = CH_2$; $R_4 = CH_2CH_2COO^-$

хлорофилл: $M = Mg, R_1 - R_4 = CH_3, C_2H_5$

Рис. 4. Строение гемоглобина (M=Fe, $R_1 = R_3 = CH_3$; $R_2 = CH_2 = CH_2$; $R_4 = CH_2 CH_2 COO^-$) и хлорофилла (M=Mg, R_1 - R_4 = CH_3 , C_2H_5)

Гем — это место связывания молекулярного кислорода с Fe^{2+} , хелатный комплекс протопорфирина с Fe^{2+} (рис. 2). Аналогичный комплекс Fe^{-+} называется гемином, или гематином. В гемоглобине ион Fe^{2+} координирован с четырьмя атомами азота пиррольных колец протопорфирина и с атомом азота гистидина. Шестое координационное место занимает молекула O_2 . Молекулы, похожие на O_2 , например CO, могут вытес нять кислород из гемового

комплекса (рис. 2), что и происходит при отравлении угарным газом СО.

Негемовые протеины (ферритин, трансферрин) играют в организме роль «накопителей» железа для работы различных ферментов, активным цент ром, которых является железо (пероксидаза, каталаза). Особый интерес представляют негемовые серосодержащие протеины, в состав которых входят железо, сульфидная се ра и серосодержащие протеины (цистеин). Они имеют сравнительно небольшую молекулярную массу и построены в виде «клеток» — кластеров. Такие негемовые структуры, например ферредоксин, играют большую роль в дыхательной цёпи, в процессах фиксации молекулярного азота жи вотными, фотосинтеза и др.

Кобальт. Кобальт входит в состав кобаламина (рис. 5) — витамина B_{12} . Это эндогенный вита мин, который синтезируется микрофлорой кишеч ника. Ферментативные реакции с участием ко баламина связаны, в общем, либо с переносом атомов H, либо групп CH_3 между биолигандами. При недостатке витамина B_{12} в организме может возникнуть заболевание — злокачественная ане мия. Соли кобальта усиливают накопление в ор ганизме некоторых других витаминов: пиридоксина, никотинамида, — которые положительно влияют на все виды обмена веществ: белковый, минеральный и углеводный. Избыток кобальта в организме понижает функции щитовидной же лезы, влияя на содержание йода в гормоне этой железы. Это проявляется в виде заболевания - эндемического зоба, распространенного в регио нах с повышенным содержанием кобальта в почве, воде и, следовательно, в некоторых продуктах питания.

Рис. 5. Фрагмент кобаламина (витамина В12)

Медь. Человек в сутки потребляет с пищей 2—3 мг меди, из которых усваивается около 30 %. В организме медь находится практически цели ком в виде координационных соединений. В растительных и животных организмах распрост ранены медьсодержащие белки — оксидазы, биологическая роль которых связана с процес сами гидроксилирования,

окислительного ката лиза, переноса кислорода и электронов. Как правило, ионы Cu^{2+} и Cu^{+} , легко переходящие друг в друга, участвуют в окислительно-восста новительных реакциях. Наиболее подробно изу чена роль меди в окислительном ферменте цитохромоксидазе. Этот фермент управляет реакциями типа $O_2 \otimes H_2 O$, $O_2 \otimes H_2 O_2$, а также очень важной для организма реакцией диспропорционирования $O_2 \otimes O^{2-} + O^0$. Недостаток и избыток меди в раз личных тканях приводит к тяжелым и часто необратимым заболеваниям. Так, удаление меди из соединительной ткани приводит к заболева нию, которое называется «красная волчанка». Накопление меди в печени и мозге приводит к ревматоидному артриту — болезни Вильсона.

Цинк. Ионы цинка Zn^{2+} способны образовы вать комплексные соединения с лигандами, содер жащими донорные атомы кислорода и азота. Цинк входит в качестве активного центра в состав многих жизненно важных ферментов, в основном катализирующих реакции гидролиза (гидролазы) пептидов, коллагена, фосфолипидов и др. Важной ролью цинка является активация им фермента карбангидразы, ответственного за гидратацию CO2 в биожидкостях и перенос ионов H^+ вместе с CO_3^{2-} . Цинк оказывает нормализую щее действие на сахарный обмен и необходим для нормальной секреции инсулина.

Молибден. Мо способен проявлять различные степени окисления (+ 4, +6), образовывать раз личные по характеру связи (Мо—Мо, Мо — О, Мо = О, Мо —О—Мо), а также проявлять раз ные координационные числа (6, 8, 10). Поэтому биологическая роль Мо велика и разнообразна. Именно наличие молибдена позволяет бобовым растениям усваивать атмосферный азот. Физиоло гическое значение Мо для животных связано с тем, что он входит в состав окислительно-восстановительного фермента ксантиноксидазы, участвующего в обмене пуринов.

Как мы видим, металлы-микроэлементы управ ляют многими жизненно важными процессами, протекающими в организме. Дефицит микроэле ментов встречается довольно редко, так как они обычно в достаточном количестве содер жатся в питьевой воде и пище. Поддержание нужных концентраций микроэлементов в питании обеспечивает рациональная диета. Если же это не помогает, то применяют специальные меди цинские препараты. Нехватка некоторых макро элементов, например кальция, фосфора, приводит к заболеваниям. С избытком макроэлементов ор ганизм борется сам, включая свои внутренние механизмы адаптации. Содержание элементов, в особенности микроэлементов, в организме Из меняется с возрастом и при различных заболе ваниях, что может служить диагностическим тестом.

Заключение

Если рассмотреть положение биогенных элемен тов в периодической системе, то видно, что био генные неметаллы занимают верхний правый угол таблицы.

Среди биогенных металлов, как и неметаллов, преобладают *s*- и *p*-элементы, причем, как и в неживой природе, преимущественно четные элементы. Так, Mg и Ca вместе с C, O и S состав ляют 85% по массе в живом организме. Био генные d-элементы сконцентрированы в основном в IV периоде, и только Мо находится в V периоде. Среди токсичных металлов преобладают тяжелые металлы: Pb, Hg, Bi, Tl.

Элементы II и IV групп образуют твердые струк туры организма. Электролитная среда организма содержит элементы I (меньше II) и IV (мень ше V) групп. Элементы VII и VIII групп проявляют себя обычно как катализаторы в фермен тативных реакциях. В переносе энергии участ вуют в основном элементы V группы — фосфор и азот. Окислительно-восстановительные реак ции в организме осуществляются при участии переходных металлов I, VIII групп.