
CS 368-1 :: C++ for Java Programmers ::  Lecture 6 ​ Be sure to sign the attendance sheet! 
  
A.  Preview 

Last Time (Feb 25) 
• Outside reading:  Linked Lists 
• typedef 
• void as a type 
• review C++ memory model 
• pointers as return types 
• pointers to functions 
• arrays of pointers 
• pointers to pointers 

Today (Mar 4) 
 start Chapter 4 
• defining classes in C++ 
• .h and .cpp files 
• ifndef …..define 
• private is the default 
• const for accessor functions 
• #include statements 
• constructors 
 

Next Time (Mar 11) 
continue Chapter 4 
• initializer lists 
• multi-file compilation 
• parameter default values  
• explicit 
• makefiles 
 
• Setting up the Big 3: 
• copy constructor 
• destructor 
• copy assignment 
 
 
 

 
B.  Announcements: 
 
1.  Homework and Program 1 are in the process of being graded.  Your grades should be 
available by March 11.  
 
2.  Outside Reading:  Linked Lists:  To complete your homework assignment, and also to complete 
program2, you should review your 367 knowledge of Linked Lists by reading this file.   If you don’t 
have a strong grasp of linked lists, you might want to consider a program partner who has a strong 
understanding.  
 
3.  Program p2 is due Thursday March 27th at 8:00 PM.   You will know enough to complete this 
program before spring break if you want, but it will be due after spring break to allow students more 
flexibility.  Be aware that program p3 will probably be due 10 days after p2.  
 
C.  What are the benefits of Classes?  Classes allow us to…… 
​ 1.  Encapsulate information (bundle data and functionality, restrict access) 

2.  Reuse code  in other programs 
3.  Make large software projects easier to design, debug, and maintain  …..usually :) 

 
General Comment:  Remember that C++ likes to  

give the programmer more than one way to do something 
treat everything like a primitive type 
use const in a lot of different ways 

http://pages.cs.wisc.edu/~cs368-1/resources/Linked-Lists/index.html
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)


 
 
To see how this works, we are going to create a class that models a song Play List 
 
 
 

 



D.  Classes in C++ can have a public interface, called the header file, which acts as class 
declaration. (It can also be called the class specification or class interface.)   Header files are optional 
in C++ but we expect you to always use them.  

# is a symbol called a 
preprocessor command 
 
We use #ifndef…#define 
 
because it allows one class 
to be used in multiple 
classes without worrying 
about that class being 
defined more than once 
 
read more…. 
 
 
.h file can include structs 
associated with this class or 
other typdefs 
 
 
 

 
Java assumes everything is 
public, but C++ assumes 
everything is private 
 
“private” declaration  is 
optional but expected in 368 
 
public is required if you want 
to make a member function 
public 
 
const means that this 
function will not change the 
data members of the class 
 
don’t forget that you need to 
end your class declaration 
with a semi-colon !!! 
​ ​  

//  PlayList.h 
//  Lecture06_inclass 
//  Created by Andrew Kuemmel on 3/4/14. 
 
#ifndef __Lecture06_inclass__PlayList__ 
#define __Lecture06_inclass__PlayList__ 
 
#include <iostream> 
using namespace std;  // defines string 
 
struct Song { 
    string name; 
    string artist;  
}; 
 
struct SongNode{ 
    Song s; 
    SongNode* next; 
}; 
 
class PlayList{ 
     
private: 
    string nameOfList; 
    int numSongs; 
    SongNode* head; 
    SongNode* tail; 
     
public: 
    PlayList(); 
    PlayList(string name); 
     
    // accessor member function 
    void print() const; 
    int countArtist(string artistName) const; 
     
    // mutator member function 
    void addToEnd(Song newSong); 
    void changeName(string newName); 
    void changePos(Song s, int newPos); 
     
}; 
 
#endif /* defined(__Lecture06_inclass__PlayList__) */ 
 

​  

http://stackoverflow.com/questions/3246803/why-use-ifndef-class-h-and-define-class-h-in-h-file-but-not-in-cpp


E.  At this step, I like to write the main function to see if our interface needs changing 
​ - we write it in a separate file (anything.cpp) 
​ - we #include the.h file  
​ - we can declare variables of anything that is named in the .h file 
​ - we can instantiate objects of type PlayList from the  stack or the heap 

//  main.cpp 
//  Lecture06_inclass 
//  Created by Andrew Kuemmel on 3/4/14. 
 
#include <iostream> 
#include "PlayList.h" 
using namespace std; 
 
int main() 
{ 
    PlayList list0 ("list0"); 
    PlayList list1 ("list1"); 
    list1.addToEnd({"Firework", "Katy Perry"}); 
    list1.print(); 
     
    PlayList* list2 = new PlayList("list2"); 
    list2->addToEnd({"May it Be", "Enya"}); 
    list2->print(); 
     
    list0 =list1; 
    // this makes a "shallow copy" of list1 
    list0.changeName("LisT ZERO"); 
    list0.print(); 
    list1.print(); 
     
    delete list2; // shallow delete 
    return 0; 
} 

 
 
 
F.  Classes have a source file (.cpp) which separates the implementation from the declaration 
​ - we need to #include “PlayList.h”.....this literally copies and pastes that code into this file​  
​ - constructors…..in C++ you can’t  have one constructor call another  
​ ​ but C++ gives other options ……….. 

-if your class has no constructor written, C++ makes a default one 
​ but if your class has at least one constructor, then C++ will not make a default 
​ you should always write a default constructor to avoid updating errors 

​ -The symbol  :: is called a “scope resolution operator”  or “scope operator”  
 

 



//  PlayList.cpp 
//  Lecture06_inclass 
//  Created by Andrew Kuemmel on 3/4/14. 
 
#include "PlayList.h" 
#include <iostream> 
using namespace std; 
 
PlayList::PlayList(){ 
    nameOfList = "Untitled"; 
    numSongs   = 0; 
    head =  NULL; 
    tail = NULL; 
} 
 
PlayList::PlayList(string name){ 
    nameOfList = name; 
    numSongs   = 0; 
    head =  NULL; 
    tail = NULL; 
} 
 
void PlayList::changeName(string n){ 
    nameOfList = n; 
} 
 
void PlayList::print() const{ 
    SongNode* temp = head; 
    cout << nameOfList<< " [ "; 
    while (temp != NULL) { 
        cout << temp->s.name << " by " << temp->s.artist << ", " ; 
        temp = temp->next; 
    } 
    cout << " ] has " << numSongs << " songs." << endl;  
} 
 
void PlayList::addToEnd(Song newSong){ 
    SongNode* temp = new SongNode; 
    temp->s = newSong; 
    temp->next = NULL; 
     
    if (head == NULL){ 
        head = temp; 
    } 
    else{ 
        tail->next = temp; 
    } 
    tail = temp; 
    numSongs++;   
} 

 


