

SOFTWARE-DESIGN-PROPOSAL-01 (Omnibus Project Leads)

31 May 2025

Distr. List

Software Lead​
Elec Leads​
Controls Leads​
Omnibus Default Reviewers & Project Leads​
Electrical Project Leads

CAN Sources Timestamp Synchronization Design Proposal

Abstract
1.​ The goal of this memo is to determine a message design that would allow the effective

synchronization of messages between the towerside “umbilical” CAN telemetry data
(TOWERSIDE) and mission control side “live telemetry antenna” CAN telemetry data
(MISSION CONTROLE SIDE).

2.​ More specifically, the goal of the proposed feature would be to account for the delays
within data processing and ensure that for a given message that is received both
TOWERSIDE and MISSION CONTROL SIDE, the same message appears with the
same timestamp.

Current State
3.​ Each instance of the parsley source currently acts as independent sources, spitting

messages to the 0MQ message queue with a timestamp determined by the host
computer’s clock.

4.​ Here is the current message format in a globallog, once unpacked with msgpack:​

['CAN/Parsley', 1746896237.84619, {'board_type_id': 'PROCESSOR',

'board_inst_id': 'GENERIC', 'msg_prio': 'LOW', 'msg_type': 'SENSOR_IMU_Z',

'data': {'time': 40.523, 'imu_id': 'IMU_PROC_ALTIMU10', 'linear_accel':

-0.247314453125, 'angular_velocity': -0.244140625}}]

Proposed Solution - Chris
5.​ Use the following algorithm to determine a calculated_timestamp: int

​ 1

a.​ Create a hashmap that maps board_type_id and board_inst_id to their

respective initial timestamps., call it board_to_initial_time_in_ns:
dict[str, int]

b.​ If no initial timestamp exists, obtain time from time.time_ns()
c.​ The calculated_timestamp of any given message is calculated by adding

board_to_initial_time_in_ns[board_type_id+board_inst_id] to
the time parameter of the board message (converting to the appropriate unit as
required)

d.​ Create a board_to_last_time_param: dict[str, float] where the
time parameter of each board’s clock is recorded in memory

e.​ If an overflow or reset is detected, such that
board_to_last_time_param[board_type_id+board_inst_id] >
current time param, flush the value into
board_to_initial_time_in_ns[board_type_id+board_inst_id] and
then add the current time parameter; then record into last time param hashmap

f.​ With every message, attach both the calculated_timestamp, the entire initial
times map, and the board to last time param map to allow for synchronization
between Parsley sources.

6.​ Rationale for the above design choices:
a.​ A hashmap guarantees O(1) access to a given board’s initial timestamp,

ensuring better accuracy of the relative time calculations. The req’ts do not
specify absolute time accuracy, only relative.

b.​ Determine a sensibly unique initial time. Use ns to avoid floating point math.
c.​ This way we can assign a unique timestamp thanks to the time.time_ns()

call, which returns a UNIX style timestamp, initially while also relying on the more
reliable onboard clock of each individual board instead of basing ourselves on
when the message was received to determine message

d.​ This is what allows us to detect overflows and resets. See above for reasoning
for using a hashmap data structure.

e.​ This allows us to keep counting up despite an overflow or a reset. See above
f.​ This allows a second Parsley source to synchronize with an existing one. Since

the determination of the current timestamp relies exclusively on arithmetic
operations, assuming that initial values are the same, a given event will have the
same timestamp anywhere (or almost).

7.​ The synchronization process will be as follows:
a.​ The Parsley shall take a new flag that determines whether it starts as a

PRIMARY source (does not attempt initial synchronization) or a SECONDARY
source (attempt synchronization)

b.​ If started as a SECONDARY source, it will instantiate an additional
omnibus.Receiver to listen for any message from an existing CAN/Parsley
source. Receive messages for some time and store them in a map of lists.

​ 2

c.​ Once received, unpack the board_to_initial_time_in_ns map as well as

the board_to_last_time_param obtained from the other Parsley source
d.​ Start receiving messages over COM. If a reset was noticed between receiving

the synchronization packet and the first COM message (obtain by comparing the
received board_to_last_time_param map and the current times obtained, if
the current is smaller AND its value is not in the array of messages received),
re-attempt synchronization. This is to prevent a race condition where we set the
initial timestamps, and then while switching over to listening over COM, a board
reset or overflow has happened, which can cause the initial timestamps to be
completely wrong. Hard cap synchronization at 5 seconds, FAIL instead of
providing potentially erroneous synchronization.

e.​ If a board doesn’t exist in the synchronization packets, just initialize with a current
time.

f.​ Once all boards have confirmed to be synchronized, proceed as usual.
8.​ Potential pitfalls & Considered alternatives

a.​ The race condition when a reset occurs during a synchronization, addressed
through various failsafes and a pre-emptive fail condition.

b.​ We could have instead sent absolute timestamps and last timestamps, however
that would make us deduce initial timestamps anyways (absolute - time
parameter). This would also take more synchronization messages, and does not
seem to account for the race condition mentioned above either.

c.​ We could compare message content, but that would require a constant
connection between the 2 parsley sources, which adds complexity

d.​ When we initially populate the map with initial times, there may be up to 16 ms of
desync between the different boards due to the imprecision inherent in
time.time(). This is not a problem as 16ms is minor when we measure events
in seconds and absolute time is not important since these 16ms will propagate to
secondary sources.

9.​ Misc. Changes
a.​ Add the Parsley instance ID to the CAN/Parsley msgs so that we can still parse

them as separate series if necessary

Please drop any further proposals down here.

1.​ Is it better to use time.monotonic_ns() instead of time.time_ns() since its
guarantee is always increasing?

a.​ Chris: No, because then we lose the guarantee of uniqueness and it makes
timestamps not comparable between different sources, say NI and Parsley. Lets
say we were to restart the source when logging is still happening, it would render
all the data garbage. With time.time_ns(), we would lose accuracy when
restarting but the data will largely be OK. This still reminds me tho that we should
absolutely PUT A BATTERY IN THE FRAMEWORK TO MAINTAIN ITS RTC.
Even if real time accuracy isn’t important, it makes everything convenient. With

​ 3

or without the CMOS battery, it doesn’t auto-start regardless. We might as well
just add a power button or deal with the consequences of our actions.

​ 4

	CAN Sources Timestamp Synchronization Design Proposal
	Abstract
	Current State
	Proposed Solution - Chris

