Pseudocode and Flowcharts are tools for designing and documenting algorithms.

An algorithm is: a step-by-step sequence of instructions to solve a specific problem in a finite amount of time.

Summary and Rules

These rules are adapted from Cambridge IGCSE Computer Science 0478 — Pseudocode Guide for Teachers, for examinations from 2017 onwards.

e |n Pseudocode keywords are in uppercase, e.g. IF, REPEAT, PROCEDURE

Data Type Description Examples Python equivalent
INTEGER A whole number (positive or negative) 5, -2, 10, © int

REAL A number capable of containing a fractional part 1.23, -0.18, 747.0 float

CHAR A single character (letter, number, space, etc...) 'a 'B', ‘1, " ‘', ‘'-! No char type in Python
STRING A sequence of zero or more characters strung together "stuff", "3.24", "", ":p" str

BOOLEAN The logical values TRUE, FALSE bool (True, False)

e Variable names are often in lowerCamelCase or UpperCamelCase — Python convention is snake_case (underscore separated)
e \Variables are assigned using an arrow: count « 5, count <« count + 1. InPython: count = 5, count = count + 1
e Numerical variables can be combined using the arithmetic operators: +, -, *, /, and the integer division operators of DIV (//) and MOD (%)
e Other operators, e.g., String methods, numerical functions, etc..., can be described using common symbols or with words
e Variables can be compared using the operators below (that all return Booleans)
Name Pseudo |Python |Examples yielding TRUE Name Pseudo | Python |Examples yielding TRUE
Equals = == 5=5, 'a'="a' Not Equals | <> I= 1<>2, "H)" < "
Greater Than |> > 3>2, -1> -2, Less Than < < 1<2,1.1<1.2,
Greater Than |»>= = 3 >=3, 3 >= 2, Less Than <= <= 1<=2,1«=1,
or Equal To 1.2 »>= 1.1, 'A'" >= 'A' [or Equal To 'a' <= 'a'
e You can combine Booleans using Logical Operators
Logical Operators | Pseudocode Python equivalent to
AND (x < y) AND (y < z) (x <y) and (y < z) X<y<z
OR (x < y) OR (x > 2*y) (x < y) or (x > 2*%y) not (y <= x <= 2%*y)
NOT NOT (x < y) not (x < vy) X >=y

e Comments are preceded by two forward slashes // in pseudocode & Java and an octothorpe # in Python
o Multiline comments are just a sequence of single line comments

Lines inside blocks are indented by four spaces

In Pseudocode, line continuations are denoted by a two space indentation

o this includes the THEN and ELSE clauses in IF statements and the cases in a CASE statement

e Line numbers are used in examples where you need to refer to lines.
o Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing

All code is contained between terminators
Sequence is indicated by arrows between flowchart elements or by subsequent lines of code

Translation Table

Assignment

(Data types do not need to
be specified)

variableMame + value

|

variableName « value

Type Flowchart Pseudocode Python

{:_ START _:;- # For the main function in Python,

T [

Terminators i All program code // All program code y .
L s END # public static void main() type things...
,___l___ﬂ # There isthe if _ name__ == "_main__" construct,
f: END :} # but it won’t be needed in this course.
| variable_name = value

"basic" types: int, float, bool, str
n.b. Python has no char type
type(variable_name) # returns the type

)

READ variableName

input a string - note the built-in prompt
variable_name = input("Prompt: ")

}

OUTPUT expression

Input .’/ INPUT variableName ./ // or Uusf pick one and stick to it) # Or, e.g., convert to an integer (or float)
L / INPUT variableName . . " "
I num = int(input("How many? "))
f l] PRINT expression . .
) print(variable_name)
Output .'/ OUTPUT expression {/ // Or (just pick one and stick to it)

print(num)

https://docs.python.org/3/library/__main__.html

if condition:
code if condition is true

false condition true IF condition else:
THEN # code if condition is false
Selection (Binary) // code if true
If Statements ELSE # Consistent indentation is compulsory in
// code if false # Python code. Note the common syntax of
1 ENDIF # keyword expression:
indented
I # code block
K,Jum IF conditionl
<" cnnﬂihﬁh}_tme_.. - THEN
N dIfS — P // code if 1st cond is true | if conditionil:
es(;el'k Eltatelr:ents false ELSE # code if 1st cond is true
EJTShee offliczll pssei::iocode - IF condition2 elif condition2:
does not allow for the {i:fknnmhc;ghx }EEE+ — THEN # code if 2nd cond is true
flattened else if structure — // code if 2nd cond true | else:
of most programming fa;l/ ELSE # code if both false
languages) // code if both false
ENDIF
\ ENDIF
CASE OF variableName . . .
There is no case/switch statement in Python.
Expression valuel: . .
The recommendation is to use a
// code 1 . . .

. . if-elif-elif-...-else sequence or maybe use a
Selection (Multiway) ' o rwi value2: dictionary lookup (not in this course)
Case Statements vt o elerwise // code 2 y P

/e There is now PEP 634; a structural pattern
OTHERWISE : // code

ENDCASE

matching match-case construct. See tutorial.

https://docs.python.org/3.9/tutorial/controlflow.html#if-statements
https://www.python.org/dev/peps/pep-0636/

Iteration (Pre)
Pre-condition loops

false

WHILE condition DO

while condition:

(WHILE-DO true // code block # code block
ENDWHILE) // inside loop # inside loop
l ENDWHILE
Zero or more times
]
—
There is no Do-WHILE or REPEAT-UNTIL loop in
1 Python. Instead, use an infinite while loop
REPEAT with an explicit break at the end.

Iteration (Post)

. // code block
Post-condition loops fixa . . .
(REPEAT UNTIL) T T true // inside loop while True:
<. ondition UNTIL condition # code block
x“i:rf’ # inside loop
false if condition: break
count «— vall X
for count in range(valuel, value2+1):
print(count)
false FOR count « valuel TO value2 # code block inside loop
. OUTPUT count
Iteration (Count)
// code block note: range(a, b) ~ [a, a+l, ..., b-2, b-1]
Count-controlled ..
frue // inside loop e.g., range(@, 5) ~ [0, 1, 2, 3, 4]

loops (FOR)

count «— count + 1

L]
e

NEXT count

shorthand: range(5) == range(0, 5)

this is so that len(range(a, b)) = b - a
and range(a, b) ~ range(a, c) + range(c, b)
(no duplicate of the middle term)

HOH O H O O R

Arrays

(Can index from 1 or 0)

l

DECLARE arrName :
ARRAY[1:1ength] OF type

DECLARE ages
ages[1] « 15
ages[2] « 14
PRINT ages[1] + ages[2]

: ARRAY[1:8] OF Integer // 8 slots to store integer ages

}

arrName[1] «— data

l

/PRINT arriame[1] /

|

Python uses Lists, not Arrays
(although arrays are available).
Lists can contain elements of
multiple types and are not of
fixed length. Technically, they
are Dynamic arrays of object refs

stuff = [1, 1.5, "ab"] # int, float, str
stuff[@] = 42 # set the 1st item
print(stuff[o]) # print 1st item

Can initialise empty arrays like

numbers = [@]*10

strings = [""]*10

Don’t use list-style features in your pseudocode.
I.e., use a fixed data type and fixed size!

Recommended
Extension:

Define a Subroutine
(Also known as
functions, methods,
etc...)

START

-

(::EiTneNameUmmﬁiji:>

START routineName(number)
// More code
RETURN number*number
END

A simple example of a function that
takes and returns an integer
def routine_name(number):

All function code

return number*number

Recommended
Extension:

Use or Call a
Subroutine

y <« routineName(5)

y = routine_name(5)

Examples

Add Two Numbers (a simple example with only Sequence, no branching)

(ffgmm %>

-

num1 —0
numz — 0
total — 0

i

[INPUT numf

1

[INPUT num2

1

total +— num1 + num2

. i

[OUTPUT total

These variables
don't need
initiadising, but if
is a good habif to
have

BEGIN
numl <« ©
num2 <« ©
total «— ©
// Get the two numbers
INPUT numl
INPUT num2
// Calculate & output their total
total <« numl + num2
OUTPUT total

END

Note that in flowcharts and
pseudocode, you often skip the
niceties Llike prompting for input and
contextualising output.

Optionally initialize variables
numl, num2, total = 90, 0, ©

Prompt and input
numl = int(input("Enter a whole number: "))
num2 = int(input("Enter another whole number: "))

Process
total = numl + num2

Output
print(“Their sum is", total)

Movie Ratings: G, PG, MA15+ (Nested IF)

In Australia (http://www.classification.gov.au/Guidelines/Pages/Guidelines.aspx)
G is for general audience

PG is parental guidance recommended for children less than 15 years of age
(M is not recommended for children less than 15 years of age -- not used in this example)
MA15+ is legally restricted to persons 15 years of age and older

The algorithm below is probably a little simplistic for really choosing which movie to see...

- —
l&_ START __._;l

| INPUT age f

|

."I INFUT guardianPresent

- - trus

< age>=157

QUTPUT

“go see 8 MATEF moviel

h

. -

falze 1

T e

{Euaﬁianpresenl :
. -
ey

falza |

QUTPUT
*go see 8 PG moviel”

—

I." OUTPUT "go see a G mowie!”

BEGIN
INPUT age // Integer
INPUT guardianPresent // Boolean

IF age >= 15
THEN
OUTPUT "Go see a MA1l5+ movie!™
ELSE
IF guardianPresent
THEN
OUTPUT "Go see a PG movie!"
ELSE
OUTPUT "Go see a G movie!"
ENDIF
ENDIF

END

age = int(input("Enter your age in years: "))
guardian_present = input("Is your guardian present Y/N? ")

if age >= 15:
print("Go see a MA15+ movie")
elif guardian_present.upper() == "Y":
print("Go see a PG movie")
else:
print("Go see a G movie")

http://www.classification.gov.au/Guidelines/Pages/Guidelines.aspx

Print a Multiplication Table up to 15s (Using count controlled

iteration)

T eTART
(_sTRT 3

-

count «— 0

}

|

oo el

e -
. -

hﬁﬁae

/' INPUT number |

count==157% =

CUTPUT count*number

'

|

count «+— count + 1

IIII

BEGIN

END

BEGIN

END

INPUT number

FOR multiple «— © TO 15:
OUTPUT multiple*number

NEXT multiple

total = ©

count = ©

INPUT number

WHILE count <= 15 DO
OUTPUT total
total = total + number
count = count + 1

ENDWHILE

number = int(input("Which times tables do you want? "))
for multiple in range(16):
print(multiple*number)

An Alternative using repeated addition and a while loop

total = ©
number = int(input("Which times tables do you want? "))
count = 0
while count <= 15:
print(total)
total = total + number
count = count + 1

21 Game - Version 1

In this game the computer and the human player take turns giving a number between 1 and 3 which is then added to the total. The first one to bring the total to or
above 21 wins the game. In this implementation, the computer chooses its number completely randomly. This is a variant of Nim (wiki).

Note: There are two exit points for this loop, so it is probably most neatly implemented in Pseudocode using Break statements.
Alternatively, the computer move could be completely contained in the else clause of the first if statement...

BEGIN
total «— ©
WHILE true DO

Begin

t

total « 0 OUTPUT "Total is ", total
Y OUTPUT "Enter a number (1, 2 or 3) "
—b/ Output "Current total is " + total/ INPUT plmove

total < total + plmove
IF total »>= 21
THEN
OUTPUT "You lose!!™
BREAK

"You lose!!"

No p2move « random 1, 2, 3

Input plmove

i

|t0tal « total + plmovel

| p2move « random choice 1, 2 or 3 | "

! OUTPUT "computer chooses

Y
* total «— total + p2move
utput "AlI chooses " + p2move
[Cuua ; pamove | Find IF total »>= 21
/

\ THEN
OUTPUT "You win!!"
BREAK
END IF
END WHILE

» p2move

total « total + p2move

Output
"You win!!"

END

https://en.wikipedia.org/wiki/Nim
https://www.lucidchart.com/documents/edit/eefd4e9a-f914-4abe-bdbd-ebc6d8acbbf5/0?callback=close&name=docs&callback_type=back&v=1012&s=338

21 Game - Version 2

The previous version of the game had both the player and the computer move in each loop. This version treats the two players more symmetrically and only has
one move per loop, the Boolean flag is used to track whose move it is. This would allow for a more flexible program where you can swap in different interfaces for
human players or Als for computer players.

BEGIN
total «— ©
playerMove « true

Begin End

total — 0

L0

REPEAT
OUTPUT "Current total is ", total
IF playerMove

playerMove — true

/Output "You Win!"/ /Oulpul "You Lose!"/

P
-

\

OUTPUT
/”Currenl total is ", tolal/ Yes playerMove? No THEN
¢ OUTPUT "Choose a number (1, 2 or 3): "
- A INPUT move
i playerMove? Yes ELSE

v move « random number 1, 2, 3

Output
"Choose a number"

A

move « random
choice 1,2 or 3

v

Output
"Computer chose", move

OUTPUT "Computer chose ", move
END IF
total < total + move
playerMove < NOT playerMove
UNTIL total »>= 21

Y

total ~ total + move

IF playerMove
Y THEN
| playerMove — NOT playerMove | OUTPUT "YOU Win | o

* ELSE
Ves /\ No OUTPUT "You Lose!"
total < 21 END IF

END

https://www.lucidchart.com/documents/edit/20790d4e-a285-4510-92f6-2b07f9159703/0?callback=close&name=docs&callback_type=back&v=1423&s=484

	Summary and Rules
	Translation Table
	Terminators
	Assignment
	Input
	Output
	Selection (Binary)
	Selection (Multiway)
	Iteration (Pre)
	Iteration (Post)
	Iteration (Count)
	Arrays
	Define a Subroutine
	Use or Call a Subroutine

	Examples
	Add Two Numbers (a simple example with only Sequence, no branching)
	Movie Ratings: G, PG, MA15+ (Nested IF)
	
	Print a Multiplication Table up to 15s (Using count controlled iteration)
	
	
	21 Game - Version 1
	21 Game - Version 2

