
Pseudocode and Flowcharts are tools for designing and documenting algorithms.

An algorithm is: a step-by-step sequence of instructions to solve a specific problem in a finite amount of time.

Summary and Rules
These rules are adapted from Cambridge IGCSE Computer Science 0478 – Pseudocode Guide for Teachers, for examinations from 2017 onwards.

●​ In Pseudocode keywords are in uppercase, e.g. IF, REPEAT, PROCEDURE

Data Type Description Examples Python equivalent

INTEGER A whole number (positive or negative) 5, -2, 10, 0 int

REAL A number capable of containing a fractional part 1.23, -0.18, 747.0 float

CHAR A single character (letter, number, space, etc…) 'a', 'B', '1', ' ', '-' No char type in Python

STRING A sequence of zero or more characters strung together "stuff", "3.14", "", ":P" str

BOOLEAN The logical values TRUE, FALSE bool (True, False)

●​ Variable names are often in lowerCamelCase or UpperCamelCase — Python convention is snake_case (underscore separated)
●​ Variables are assigned using an arrow: count ← 5, count ← count + 1. In Python: count = 5, count = count + 1
●​ Numerical variables can be combined using the arithmetic operators: +, -, *, /, and the integer division operators of DIV (//) and MOD (%)
●​ Other operators, e.g., String methods, numerical functions, etc…, can be described using common symbols or with words
●​ Variables can be compared using the operators below (that all return Booleans)

Name Pseudo Python Examples yielding TRUE Name Pseudo Python Examples yielding TRUE

Equals ＝ == 5 = 5, 'a' = 'a' Not Equals <> != 1 <> 2, ":)" <> ":("

Greater Than > > 3 > 2, -1 > -2, Less Than < < 1 < 2, 1.1 < 1.2,

Greater Than
or Equal To

>= >= 3 >= 3, 3 >= 2, ​
1.2 >= 1.1, 'A' >= 'A'

Less Than
or Equal To

<= <= 1 <= 2, 1 <= 1, ​
'a' <= 'a'

●​ You can combine Booleans using Logical Operators

Logical Operators Pseudocode Python equivalent to

AND (x < y) AND (y < z) (x < y) and (y < z) x < y < z

OR (x < y) OR (x > 2*y) (x < y) or (x > 2*y) not (y <= x <= 2*y)

NOT NOT (x < y) not (x < y) x >= y

●​ Comments are preceded by two forward slashes // in pseudocode & Java and an octothorpe # in Python
○​ Multiline comments are just a sequence of single line comments

●​ Lines inside blocks are indented by four spaces
●​ In Pseudocode, line continuations are denoted by a two space indentation

○​ this includes the THEN and ELSE clauses in IF statements and the cases in a CASE statement
●​ Line numbers are used in examples where you need to refer to lines.

○​ Line numbers are consecutive, unless numbers are skipped to indicate that part of the code is missing
●​ All code is contained between terminators
●​ Sequence is indicated by arrows between flowchart elements or by subsequent lines of code

Translation Table
Type Flowchart Pseudocode Python

Terminators

START​
 // All program code​
END

For the main function in Python, ​
just type your program code. ​
No need for START-END or any ​
public static void main() type things…
There is the if __name__ == "__main__" construct,
but it won’t be needed in this course.

Assignment
(Data types do not need to
be specified)

variableName ← value

variable_name = value​
"basic" types: int, float, bool, str

n.b. Python has no char type​
type(variable_name) # returns the type

Input

READ variableName

// Or (just pick one and stick to it)

INPUT variableName

input a string - note the built-in prompt​
variable_name = input("Prompt: ")​
Or, e.g., convert to an integer (or float)​
num = int(input("How many? "))

Output

PRINT expression

// Or (just pick one and stick to it)

OUTPUT expression

print(variable_name)

print(num)

https://docs.python.org/3/library/__main__.html

Selection (Binary)
If Statements

IF condition ​
 THEN​
 // code if true​
 ELSE​
 // code if false​
ENDIF

if condition:​
 # code if condition is true​
else:​
 # code if condition is false

​
Consistent indentation is compulsory in ​
Python code. Note the common syntax of

keyword expression:

indented

code block

Nested If Statements
used like Else-If
(The official pseudocode
does not allow for the
flattened else if structure
of most programming
languages)

IF condition1 ​
 THEN​
 // code if 1st cond is true​
 ELSE

 IF condition2​
 THEN​
 // code if 2nd cond true​
 ELSE​
 // code if both false

 ENDIF

ENDIF

if condition1:​
 # code if 1st cond is true​
elif condition2:​
 # code if 2nd cond is true​
else:​
 # code if both false​

Selection (Multiway)
Case Statements

CASE OF variableName ​
 value1:

 // code 1 ​
 value2:

 // code 2​
 // ...​
 OTHERWISE : // code ​
ENDCASE

There is no case/switch statement in Python.

The recommendation is to use a

if-elif-elif-...-else sequence or maybe use a

dictionary lookup (not in this course)

There is now PEP 634; a structural pattern

matching match-case construct. See tutorial.

https://docs.python.org/3.9/tutorial/controlflow.html#if-statements
https://www.python.org/dev/peps/pep-0636/

Iteration (Pre)
Pre-condition loops
(WHILE-DO
 ENDWHILE)

Zero or more times

WHILE condition DO​
 // code block​
 // inside loop​
ENDWHILE

while condition:​
 # code block​
 # inside loop​

Iteration (Post)
Post-condition loops
(REPEAT UNTIL)

REPEAT​
 // code block​
 // inside loop​
UNTIL condition

There is no Do-WHILE or REPEAT-UNTIL loop in

Python. Instead, use an infinite while loop

with an explicit break at the end.

while True:​
 # code block​
 # inside loop​
 if condition: break

Iteration (Count)
Count-controlled
loops (FOR)

FOR count ← value1 TO value2

 OUTPUT count

 // code block​
 // inside loop​
NEXT count

for count in range(value1, value2+1):

 print(count)​
 # code block inside loop

​
note: range(a, b) ~ [a, a+1, ..., b-2, b-1]

e.g., range(0, 5) ~ [0, 1, 2, 3, 4]​
shorthand: range(5) == range(0, 5)

this is so that len(range(a, b)) = b - a

and range(a, b) ~ range(a, c) + range(c, b)

(no duplicate of the middle term)

Arrays
(Can index from 1 or 0)

DECLARE ages : ARRAY[1:8] OF Integer // 8 slots to store integer ages

ages[1] ← 15

ages[2] ← 14

PRINT ages[1] + ages[2]

Python uses Lists, not Arrays

(although arrays are available).

Lists can contain elements of

multiple types and are not of

fixed length. Technically, they
are Dynamic arrays of object refs

stuff = [1, 1.5, "ab"] # int, float, str​
stuff[0] = 42 # set the 1st item​
print(stuff[0]) # print 1st item

Can initialise empty arrays like

numbers = [0]*10

strings = [""]*10
Don’t use list-style features in your pseudocode.

I.e., use a fixed data type and fixed size!

Recommended
Extension:
Define a Subroutine
(Also known as
functions, methods,
etc…)

START routineName(number)

 // More code

 RETURN number*number

END

A simple example of a function that ​
takes and returns an integer​
def routine_name(number):​
 # All function code​
 return number*number

Recommended
Extension:
Use or Call a
Subroutine

y ← routineName(5) y = routine_name(5)

Examples

Add Two Numbers (a simple example with only Sequence, no branching)

BEGIN

num1 ← 0

num2 ← 0

total ← 0
// Get the two numbers

INPUT num1

INPUT num2
// Calculate & output their total

total ← num1 + num2

OUTPUT total

END

Note that in flowcharts and

pseudocode, you often skip the

niceties like prompting for input and

contextualising output.

Optionally initialize variables​
num1, num2, total = 0, 0, 0​
​
Prompt and input​
num1 = int(input("Enter a whole number: "))​
num2 = int(input("Enter another whole number: "))​
​
Process​
total = num1 + num2​
​
Output​
print("Their sum is", total)​
​

Movie Ratings: G, PG, MA15+ (Nested IF)
In Australia (http://www.classification.gov.au/Guidelines/Pages/Guidelines.aspx)

G is for general audience
PG is parental guidance recommended for children less than 15 years of age
(M is not recommended for children less than 15 years of age -- not used in this example)
MA15+ is legally restricted to persons 15 years of age and older

The algorithm below is probably a little simplistic for really choosing which movie to see…

BEGIN

INPUT age // Integer

INPUT guardianPresent // Boolean

IF age >= 15

 THEN

 OUTPUT "Go see a MA15+ movie!"

 ELSE

 IF guardianPresent

 THEN

 OUTPUT "Go see a PG movie!"

 ELSE

 OUTPUT "Go see a G movie!"

 ENDIF

ENDIF

END

age = int(input("Enter your age in years: "))​
guardian_present = input("Is your guardian present Y/N? ")​
​
if age >= 15:​
 print("Go see a MA15+ movie")​
elif guardian_present.upper() == "Y":​
 print("Go see a PG movie")​
else:​
 print("Go see a G movie")​

http://www.classification.gov.au/Guidelines/Pages/Guidelines.aspx

Print a Multiplication Table up to 15s (Using count controlled iteration)

BEGIN

INPUT number

FOR multiple ← 0 TO 15:

 OUTPUT multiple*number

NEXT multiple

END

// Alternative using repeated addition

BEGIN

total = 0

count = 0

INPUT number

WHILE count <= 15 DO

 OUTPUT total

 total = total + number

 count = count + 1

ENDWHILE

END

number = int(input("Which times tables do you want? "))​
for multiple in range(16):​
 print(multiple*number)​
​
​

An Alternative using repeated addition and a while loop​
​
total = 0 ​
number = int(input("Which times tables do you want? "))​
count = 0​
while count <= 15:​
 print(total)​
 total = total + number​
 count = count + 1​

21 Game - Version 1
In this game the computer and the human player take turns giving a number between 1 and 3 which is then added to the total. The first one to bring the total to or
above 21 wins the game. In this implementation, the computer chooses its number completely randomly. This is a variant of Nim (wiki).

Note: There are two exit points for this loop, so it is probably most neatly implemented in Pseudocode using Break statements.​
Alternatively, the computer move could be completely contained in the else clause of the first if statement...

BEGIN

total ← 0

WHILE true DO // loop until a break statement

// 1, 2 or 3 - TODO add data validation​
OUTPUT "Total is ", total​
OUTPUT "Enter a number (1, 2 or 3) "​
INPUT p1move ​ ​
total ← total + p1move​
IF total >= 21

 THEN

OUTPUT "You lose!!"

BREAK

 END IF​
// TODO add smarter AI​
p2move ← random 1, 2, 3​
OUTPUT "computer chooses ", p2move​
total ← total + p2move

IF total >= 21

 THEN

OUTPUT "You win!!"​
BREAK

END IF

END WHILE

END

https://en.wikipedia.org/wiki/Nim
https://www.lucidchart.com/documents/edit/eefd4e9a-f914-4abe-bdbd-ebc6d8acbbf5/0?callback=close&name=docs&callback_type=back&v=1012&s=338

21 Game - Version 2
The previous version of the game had both the player and the computer move in each loop. This version treats the two players more symmetrically and only has
one move per loop, the Boolean flag is used to track whose move it is. This would allow for a more flexible program where you can swap in different interfaces for
human players or AIs for computer players.

BEGIN

total ← 0​
playerMove ← true // Flag for player or computer turn​

REPEAT

OUTPUT "Current total is ", total​
IF playerMove

 THEN

OUTPUT "Choose a number (1, 2 or 3): "​
INPUT move

 ELSE // (not playerMove => computer’s turn)

move ← random number 1, 2, 3​
OUTPUT "Computer chose ", move

END IF​
total ← total + move​
playerMove ← NOT playerMove

UNTIL total >= 21

​
IF playerMove

 THEN

OUTPUT "You Win!"

 ELSE

OUTPUT "You Lose!"

END IF

END

https://www.lucidchart.com/documents/edit/20790d4e-a285-4510-92f6-2b07f9159703/0?callback=close&name=docs&callback_type=back&v=1423&s=484

	Summary and Rules
	Translation Table
	Terminators
	Assignment
	Input
	Output
	Selection (Binary)
	Selection (Multiway)
	Iteration (Pre)
	Iteration (Post)
	Iteration (Count)
	Arrays
	Define a Subroutine
	Use or Call a Subroutine

	Examples
	Add Two Numbers (a simple example with only Sequence, no branching)
	Movie Ratings: G, PG, MA15+ (Nested IF)
	
	Print a Multiplication Table up to 15s (Using count controlled iteration)
	
	
	21 Game - Version 1
	21 Game - Version 2

