[OSS] Secure Views for dynamic policy
enforcement

Authors: Prashant Singh Russell Spitzer Vishwa Lakkundi
Last updated: Jun 24, 2025

Reviewers & Contributors: laurent@dremio.com jb.onofre@dremio.com
royhasson@microsoft.com kevinlius@microsoft.com

Prev OSS work : B Iceberg Spec Extensions for Data Access Decision Exchange

Motivation

For data warehouse and lakehouse systems, robust access control is vital to maintaining
security, privacy, and compliance. In multi-cloud, multi-engine environments, it serves as a key
component of comprehensive data governance.

It is already possible to store access management policies in several catalogs and systems
such as Glue and Ranger and implement enforcement of such policies in the several engines
like Spark, Trino and others. The OSS proposal here discusses an approach to extend
Iceberg spec to enable exchanging Access Decision’ rather than merely the access
control policies.

The main reason we use the Iceberg view is that different catalogs have different types of
transformation policies, and developing a standardized spec that all parties can all agree upon
will be very challenging and also limiting in functionalities.

In this view-based approach, catalogs can always dynamically construct a view object that can
be used by an engine which fully describes all the access decisions. The goal is that as long as
engines naturally integrate with Iceberg view features that we propose below, they will be
able to enforce access decisions from transformation policies without the need to make
additional changes.

Typical alternatives demand extensive, intrusive engine modifications for both policy store
integration and policy evaluation. In contrast, view redirection streamlines this by centralizing
policy management within the catalog, eliminating the need for such deep engine changes.

Some Companies such as Linkedin (ViewShift) and AWS, already use such redirection and
views of enforcing access decisions in prod to achieve the same.

mailto:prashant.singh@snowflake.com
mailto:russell.spitzer@snowflake.com
mailto:vishwa.lakkundi@snowflake.com
mailto:laurent@dremio.com
mailto:jb.onofre@dremio.com
mailto:royhasson@microsoft.com
https://docs.google.com/document/d/14nmuxxfzQsYo59o0Fbpb-pxOlzS6bVtduL8P8pwKZ6U/edit?tab=t.0#heading=h.irh2zymohx17
mailto:kevinliu5@microsoft.com
https://docs.google.com/document/d/14nmuxxfzQsYo59o0Fbpb-pxOlzS6bVtduL8P8pwKZ6U/edit?tab=t.0#heading=h.irh2zymohx17
https://trino.io/assets/blog/trino-summit-2024/trino-summit-2024-linkedin-policy.pdf

Goals

Enable a uniform way to enforce row and column governance policies across engines.

2. Enable these policy enforcement with least amount of changes to engines such (as
Trino, Starrocks, Spark Connect)

3. Support the following policy spec:

B [OSS] Row and Column Based Access Control: Policy Definitions

4. Support row and column based access control for reads only, all writers need to have a
privilege as TABLE_WRITE_DATA of Apache Polaris, which essentially means Enabling
writing data to the table by receiving short-lived read+write storage credentials from the
catalog (details).

Non Goals:

1. Establish trust between Polaris and Engines. We will have to solve this problem,
separately as there needs to be a trust relationship between catalog and engine. We
have some early thoughts on it as if it is like mTLS or by using secure token exchange.

2. Adding reading Iceberg view read support to Engine

3. Secure view execution requirements such as not allowing reordering of predicates within
the engine leading to security vulnerabilities, hiding the plan of execution from the user
etc are not part.

4. Supporting UDF’s there is no standard way to create and store UDF in iceberg
yet,Iceberg Community is working for SQL based UDF, one should wait for it and then
the story on how it integrates with secure worlds such as column masks. This doc /
proposal only supports what iceberg view spec supports as of today.

5. Non SQL clients

Background:

Engines way of identifying if it’s view or table

Engines such as Trino during the analysis phase tries to understand if the identifier refers to a
table or a view by issuing the catalog IRC loadView / loadTable (code) .

Engines way of storing security properties for a view:

Trino uses iceberg view metadata (spec) is stored in view properties (code)

https://docs.google.com/document/d/12nhS0GX1U1PqEBKp74bIBZsL9kB5duDlN9diHJAhJsM/edit?tab=t.0#heading=h.loa0wu1y4ox1
https://polaris.apache.org/releases/1.0.0/access-control/#table-privileges
https://github.com/trinodb/trino/blob/3b3f15d8303983e2db1f523162e535a470fc9825/core/trino-main/src/main/java/io/trino/metadata/MetadataManager.java#L624
https://iceberg.apache.org/view-spec/#terms
https://github.com/trinodb/trino/blob/6e436e02c506fc42dc407d4abbb08759478ebcac/plugin/trino-iceberg/src/main/java/io/trino/plugin/iceberg/catalog/rest/TrinoRestCatalog.java#L701

Implementation Details : Passing secure view back during analysis
phase:

POC: B Scratch Pad for Trino POC

Overview:

The main idea is to use views as a decision of access control and enforce FGAC (Fine Grained
Access Control) without making any changes to the engine. The following flow works
seamlessly without any code changes in Trino and deals with the complexity of breaking
recursive calls without any change to spec or engines.

A user can define an access control policy (Column level Security or RLS Row level Security),
when during analysis phase, the engine tries to infer if its view or table and issues a loadTable
and the table had Column and Row level policy on identifier it should get a 404 so the analyzer
calls loadView on identifier. Polaris returns back SecureView (a view translating row level and
column level access control to a SQL which engines understand). As per iceberg spec, the
dialect is part of the view definition so a secure view will have dialects of engines which Polaris
thinks can execute secure views.

Secure view generation, both metadata for secure view and SQL dialects supported is Polaris
responsibility, as if Polaris acts as a Policy Evaluator and conveys the result back to the Engine
as part of Secure View.

Requirements:

e Column level Security / Row level Security policy contains table column names and row
filters or may be the column fieldlds or iceberg projections. (to ensure schema evolution
can’t exploit for security attacks)

Engines should understand / support reading iceberg views
Engines execute the view in a secure way as if it shouldn’t allow things like predicate
re:ordering which could lead to attacks like this [ref link].

e Polaris Policy Evaluator module supports generating the SQL in the target dialects (ANSI
mostly) and also supports generating view metadata per engine to convey back to the
engine that it's a secure view.

e Things like credential vending for the table remains intact as the underlying APIs such as
loadTable and loadCredentials of IRC will be called in the normal flow.

https://docs.google.com/document/d/1y8YkgREVPF_L0Prci5VnOc8TD5BcIQdlMOFNeqpFSTU/edit?tab=t.0#heading=h.i0jyy523kg42
https://docs.snowflake.com/en/user-guide/views-secure#using-secure-views-with-snowflake-access-control

<

~ ~

user has
permission
to colA
with row
level filter >
as
colB =
'random’
on
secure_tbl

p. ~

[SELECT * from
| db.secure_tbl

S meaemmms

Analysis

1/ is db.secure_tbl
materiized view ?

2/is db.secure_tbl a view ? loadView(db, secure_tbl)

[

loadView

view exists

Yy

view doesn't exist

table secure_tbl exists ?

select colA from]
secure_tbl_ref where colB = secure_tbl exists
‘random’ -

Get secure view
represtation with policy

Secure view on thl given
back
Load Table
<secure_tbl_ref>

Policy Evaluator /

v

Secure SQL
Load Table Response generator
(secure_tbl)

Steps:
e Engines try to understand if the identifier is a view or a table.
e Engine issues a loadTable with identifier, Polaris checks if the table had RLS / CLS

attached, if yes gives back 404

e Engine Analyzer forced to issue IRC loadView call for trying to find if the identifier is view

Polaris determines that no such view exists but there exists a table of the same name
which has policies defined.

Existing IRC AuthN should be able to figure out what permission a user has against the
table and what are the policies associated with it .

Polaris issues a call to Policy engine Evaluator to evaluate the RLS and CLS policies
associated with the table and get back the Iceberg View in all the engine dialects Polaris
thinks the engine is trustable.

Note: Tables referenced in the Secure view definitions are one shot table names that
Polaris tracks let call it secure_tbl_ref

Engines post seeing the view definition sql should treat this Relation as View and
proceed to its resolution.

Engine tries to make a call to Polaris again to resolve the table which view refers to
(secure_tbl_ref), Polaris does a lookup to find out the actual table name and returns its
response as part of loadTable. This is required to break the recursion, as if we give back
the engine the view containing the actual table name, it will again get a back view.

View gets resolved and executed securely within the trusted engine.

FAQs: Secure Views for Dynamic Policy Enforcement

1.

2.

What if an engine doesn’'t want to use views for Fine-Grained Access
Control (FGAC)?
Engines can directly request the policy from the catalog. This policy can be provided
during loadTable or through a separate loadPolicy API, similar to Polaris's approach.
(Refer to: Policy Store Implementation in Apache Polaris), we can have a defined
header, which will send back a token issued by the catalog, which when trusted engines
call the table with it can indicate it wants view redirection or not.
Essentially there are 4 cases
o Trusted Engine which are smart and can enforce policy themselves (loadTable
would pass, policy can be conveyed via loadTable or loadPolicy API)
o Trusted Engine which don’t understand policy (loadTable would give 404,
loadView would give a 200 with the policy evaluated view)
o Non trusted Engine which can understand policy (loadTable and loadView all
404)
o Non trusted Engine which can’t understand policy (loadTable and loadView all
404)
Who generates these secure views?
Polaris generates the secure views. This generation can occur at runtime or through an
offline process. The key is to ensure that when a table is requested, a view reflecting the
most current policy is returned.

3. What is the impact on listTables and listViews who qualify for

re-direction?
o listViews : No effect, as there isn’t technically a view of that name

https://docs.google.com/document/d/1PYnCw8T1lMQfJCa1VRjk9kWMKFPtg8O0YiZ7CEoGh3Y/edit?tab=t.0#heading=h.dy9w9eb8z5f1

o listTables : some engines does an optimizations to do a listTable before resolving
a view to avoid repeated calls to interpret if its a table or a view, i think it am fine
with either listTable to show the table name, note in Polaris list tables it is an
entirely different Privilege TABLE_LIST here, as for cases like federation we do
want to know list of tables, but other perspective is will federation be a user with
just READ privilege or a SUPER ?
How does it affect caching ?
Table Metadata: For trusted engines, if they accept the contract that table references
will always be hidden from the user, we will consistently return the same table reference.
This allows engines to cache metadata names against identical table reference names.

Result Set Caching: Result set caching is typically performed per query fragment,
which yields deterministic results. We capture the key as the plan node signature and
utilize the ETAG of the files. This approach should ideally not negatively impact cache
hits, given that the entire query subtree and leaf nodes (like tables) are largely
consistent.

. What features does this proposal support?

o Column Hiding: Controls which columns a user can see.

o Column Masking: Applies a mask to a column before projection.
o Row Filtering: Filters rows to determine visibility.

The proposal outlines a phased implementation:

o Phase 1: Policies with column projections and basic row filters using Iceberg
expressions. (Refer
B [OSS] Row and Column Based Access Control: Policy Definitions)

o Phase 2: Policies with column projections and basic row filters using Iceberg
expressions that can reference context functions / variables. (Refer to:
B [OSS] Row and Column Based Access Control: Policy Definitions)

o Phase 3: Policies incorporating column masks and row masks, contingent on
Iceberg UDFs being available. (Refer to:
B [OSS] Row and Column Based Access Control: Policy Definitions)

. Why use Iceberg Expressions as row filters?

Iceberg expressions are portable. While their operator support is limited, most engines
already have converters from engine-specific SQL to engine expressions and then to
Iceberg expressions. Examples include Trino (here) and Spark (here).

Is the view SQL text required to be dialect-specific?

No, the goal is for the view SQL to be ANSI compliant, allowing the same text to work
with Spark and Trino. This involves creating a template like: Select <column projection
list> from tbl where <row_filters>. This essentially creates a Project and Filter node on
top of the table relation, which engines would need to do regardless, even if the catalog
returned the policy.

How are dialect-specific SQL policies handled?

https://docs.google.com/document/d/12nhS0GX1U1PqEBKp74bIBZsL9kB5duDlN9diHJAhJsM/edit?tab=t.0#bookmark=id.3v0oxb5g3wn5
https://docs.google.com/document/d/12nhS0GX1U1PqEBKp74bIBZsL9kB5duDlN9diHJAhJsM/edit?tab=t.0#bookmark=id.3v0oxb5g3wn5
https://docs.google.com/document/d/12nhS0GX1U1PqEBKp74bIBZsL9kB5duDlN9diHJAhJsM/edit?tab=t.0#bookmark=id.3v0oxb5g3wn5
https://polaris.apache.org/in-dev/unreleased/access-control/#table-privileges
https://github.com/trinodb/trino/blob/master/plugin/trino-iceberg/src/main/java/io/trino/plugin/iceberg/ExpressionConverter.java
https://github.com/apache/iceberg/blob/main/spark/v4.0/spark/src/main/scala/org/apache/spark/sql/execution/datasources/SparkExpressionConverter.scala

The community is currently working on UDF support, (for ex

B [OSS] Row and Column Based Access Control: Policy Definitions) which when there,
is expected to manage the complexities of dialect-specific functions. For instance, a UDF
named hash might map to sha2 in Spark dialect and sha256 in Trino, or even better if
some IR comes up fine too.

. What is the impact on iceberg functions like history/time travel ?

Short answer, it will not work, though things like icebergs snapshot table (here) exposes
more metadata than intended for example snapshot summary, which defeats the
purpose for FGAC, also time travel with history of column names might require a lot of
thinking but might not work at all without rest spec change to load table to give it in the
call that what snapshot we want to time travel to ?

https://docs.google.com/document/d/12nhS0GX1U1PqEBKp74bIBZsL9kB5duDlN9diHJAhJsM/edit?tab=t.0#bookmark=id.3v0oxb5g3wn5
https://iceberg.apache.org/docs/nightly/spark-queries/#snapshots

	[OSS] Secure Views for dynamic policy enforcement
	Motivation
	​Goals
	​Non Goals:
	​Background:
	​Engines way of identifying if it’s view or table
	Engines way of storing security properties for a view:

	Implementation Details : Passing secure view back during analysis phase:
	Overview:
	​Requirements:

	​FAQs: Secure Views for Dynamic Policy Enforcement

