FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id, laman: http://fkip.unila.ac.id

Bachelor of Education in Physics

MODULE HANDBOOK

Module Name	Quantum Physics			
Module Level, if Applicable	Bachelor			
Code	KFI620213			
Sub-Heading, (*if Applicable)	-			
Classes, (*if Applicable)	-			
Description	The Quantum Physics course aims to provide an in-depth			
	understanding of the fundamental principles of Quantum Physics, as			
	well as their linkages to Social Science Issues (SSI), Technological			
	Pedagogical Content Knowledge (TPACK), and Nature of Science			
	(NOS). In this course, students will learn to understand and apply			
	quantum physics concepts and phenomena for prospective teachers to			
	support physics learning in schools, as well as how applications of			
	Qauntum Physics affect everyday life, for example in Computer			
	Technology and Quantum Processors and Medical Imaging (MRI). In			
	addition, students will be taught to integrate technology into learning,			
	use simulation and analysis software to illustrate Quantum Physics			
	phenomena. Through an understanding of NOS, students will realise			
	that science is dynamic and ever-evolving, influenced by technological			
	innovations and societal needs. Students will understand the basic			
	characteristics of science, including how quantum physics knowledge			
	is developed through the scientific method and peer review process.			
Semester	5th			
Module Coordinator	Dr. Abdurrahman, M.Si.			
Lecturers	Team Teaching of Qauntum Physics			
Language	Indonesian/English			
Classification With in the	Study Program Compulsory Course			
Curriculum				

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

Teaching Format/Class Hours	Learning activity can be carried out in the form of lecture or students'						
Per Week During the Semester	response:						
	1. Face to face: 50 minutes/SKS						
	2. Structured activity: 60 minutes/SKS						
	3. Independent activity: 60 minutes/SKS						
Teaching methods	In class activity: Team Based Project, presentation						
	Structured activity: Group Discussion						
	Independent activity : Expository						
Workload	1 CU (SKS) for bachelor degree equal to 3 work hours per week or						
	170 minutes. 3x50 minutes face to face, 3x60 minutes structured tasks,						
	3x60 minutes independent learning. for 16 weeks (including midterm						
	and final exam), a total of 136 hours/semester. One CU equals to 1.51						
	ECTS						
Credit Points	3 CU (SKS) = 3 x 1.51 = 4.53 ECTS						
Prerequisites Courses	-						
Course Outcomes (CO)	1. PLO-1 : Demonstrate knowledge of fundamentals of quantum						
	2. PLO-2 : Formulate physical systems using mathematics to solve						
	physics problems.						
	3. CO-1 : Students can analyze the failure of classical physics in						
	explaining microscopic systems						
	4. CO-2 : Students can study the basic theory of Quantum Planck						
	black body radiation						
	5. CO-3: Students can use the postulates of quantum mechanics in						
	Quantum Physics						
	6. CO-4 : Students can apply the concept of Schrodinger Wave						
	Mechanics						
	7. CO-5 : Students can describe the concept of Quantum Mechanics						
	Operators and Eigen Price Equations						

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

	8. CO-6 : Students can analyze the application of the Schrodinger				
	method to the hydrogen atom system				
Contant	, , ,				
Content	This course is presented to equip students to understand and apply				
	quantum physics concepts and phenomena for prospective teachers to				
	support physics learning in schools.				
Study/Exam Achievements	Midterm Exam 20%				
	Final Exam 20%				
	Assignment 10%				
	Project Assignment 50 %				
	The initial cut - off points for grades A, B+, B, C+, C, and D should				
	not be less than 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, and				
	40%, respectively.				
Examination Methods	1. Midterm Exam (UTS)				
	✓ UTS is held at the 8th meeting				
	✓ UTS is a written test in the form of objective and essay, and carried				
	out in the classroom with an implementation time of 120 minutes				
	according to the module schedule				
	✓ UTS is carried out to see the achievements of the PLO and CO				
	which are in accordance with the characteristics of the Quantum				
	Physics module				
	2. Final Exam (UAS)				
	✓ UAS is held at the 16th meeting				
	✓ UAS is exam with an implementation time of 120 minutes which				
	follows the UAS implementation schedule of the department				
	✓ UAS is carried out to see the achievements of the PLO and CO				
	which are in accordance with the characteristics of the Quantum				
	Physics module.				

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

	3. Project Assignment					
	✓ Project assignment is given as group task					
	✓ Project assignment is carried out for one semester and presented at					
	the end of semester					
	✓ Project assignment is carried out to see the achievements of the					
	PLO and CO which are in accordance with the characteristics of the					
	Quantum Physics module.					
	4. Assignments					
	✓ Assignments are given as exercise in each meeting in the form of					
	worksheet and independent task					
	✓ Assignments are about analyzing simple problems in physics and					
	solving them with the concept of Quantum Physics					
	✓ Assignments are given as individual tasks or group tasks and					
	submitted in a limited time.					
	✓ The assignments are carried out to see the achievements of the PLO					
	and CO which are in accordance with the characteristics of the					
	Quantum Physics module					
Forms of Media	LCD, whiteboard, and online resources					
Literature	1. Abdurrahman, dan Maulina. 2016. Fisika Kuantum bagi Calon					
	Guru. Bandar Lampung: Universitas Lampung.					
	2. S. Rajasekar dan R. Velusamy. 2021. Quantum Mechanics and					
	Quantum Information.					
	3. J.J. Sakurai dan Jim Napolitano. 2021. Modern Quantum					
	Mechanics.					
	4. David J. Griffiths dan Darrell F. Schroeter. 2020. Introduction to					
	Quantum Mechanics (3rd ed).					
	1					

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Jalan Prof. Dr. Sumantri Brojonegoro No.1 Gedong Meneng - Bandar Lampung 35145 Telp./Fax: (0721) 704624 *e-mail*: fkip@unila.ac.id,

laman: http://fkip.unila.ac.id

PLO and CO Mapping

	PLO	PLO 2	PLO	PLO	PLO 5	PLO	PLO	PLO	PLO	PLO	PLO
	1	PLO 2	3	4	ILUS	6	7	8	9	10	11
CO 1	V										
CO 2	V										
CO 3		V									
CO 4		V									
CO 5		V									
CO 6		V									