Prior Knowledge

They know how to use a basic Micro:Bit...Basic Blocks, simulator, and bluetooth

Overview

Day 1: Introduction to Smart Cutebot (50 minutes)

Objective: Program the Micro:Bit with a picture on the display board, turn 90 degrees to the left and right, move forward and backward.

Day 2: Creating a shape with Cutebot (50 minutes)

Objective: Program the Micro:Bit to successfully drive in a selected shape utilizing turns and forward and backward motions.

Day 3: Acceleration and speed test (race) (50 minutes)

Objective: Program the Micro:Bit acceleration and use Loops for increased distance.

Day 4: Obstacle Course using turns (50 minutes)

Objective: Teams will program their Cutebot to navigate through a series of obstacles increasing the duration it takes to successfully complete each challenge.

Materials

Smart Cutebot - batteries Micro:Bit V1 or V2 USB connector Laptop Tape Add Extension "Cutebot"

Day 1: Introduction to Smart Cutebot (50 minutes)

Objective: Program the Micro:Bit with a picture on the display board, turn 90 degrees to the left and right, move forward and backward.

Warm Up: BellWork

- 1. Go to extensions and search cutebot.
- 2. Choose the cutebot extension.
- 3. Predict what you think will happen with the blocks from the extension.

4. Share with a partner

Activity: Constructing Knowledge

- 1. Review the basic blocks used with Micro:Bits.
- 2. With your Partner, complete the following tasks:
 - a. Program an icon, number, or string.
 - b. Use the Cutebot blocks to program your cutebot to turn right and then left.
 - c. Use the Cutebot blocks program to move your cutebot forward and backward.
- 3. Random Reporter: Teams share how they accomplished each task and/or other new skills they learned whilst completing minimum requirements (finger tracing)

Wrap Up: 3-2 1

- What are 3 things you learned?
- What are 2 things you found interesting?
- What is 1 thing you have a question about?

Day 2: Creating a shape with Cutebot (50 minutes)

Objective: Program the Micro:Bit to successfully drive in a selected shape utilizing turns and forward and backward motions.

Warm Up: BellWork

- Display two programs that include cutebot blocks for turning and moving forward and backward.
- 2. Partner A will look at program A and partner B will look at program B.
- 3. Finger Trace to determine what the program is doing.
- 4. Share with your partner what the program does.

Activity: Constructing Knowledge

- 1. What are shapes that have 90 degree angles?
- 2. How would you program your cutebot to make a shape? What blocks would you use?
- 3. Work with a partner to create 2 different shapes using your Cutebot. Decide which two shapes you will make. What blocks will you need?
- 4. Use tape to track the path your Cutebot runs on. Was your program successful?

Wrap Up: 3-2 1

- What are 3 things you learned?
- What are 2 things you found interesting?
- What is 1 thing you have a question about?

Day 3: Acceleration and speed test (race) (50 minutes)

Objective: Program the Micro:Bit acceleration and use Loops for increased distance.

Warm Up: BellWork

- 1. Display two different programming outcomes (A & B) (i.e., move the robot in an L shape)
- 2. Partner will provide verbal instructions for their partner to follow in order to code on the computer; vice versa.

Activity: Constructing Knowledge

5.

Wrap Up: 3-2 1

- What are 3 things you learned?
- What are 2 things you found interesting?
- What is 1 thing you have a question about?