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Introduction and Motivation 
 
 ​ Since the inception of the internet and the sharing of files, compression algorithms 
have provided an effective way to optimise the transfer of data. With ever increasing file sizes 
due to increased complexity and internet speeds continue to skyrocket, a nice equilibrium has 
been maintained so far. However, in today's ever competitive technological landscape, the 
ability to be faster is of high value. This is especially true with images, a notoriously large 
file type that has become more and more transferred as the years go on. 
​ In this paper, we will look into the ability to increase the speed of file transfer by 
reducing a file’s size using Neural Networks, hoping to increase the speed in which 
technologies that use file transfering operate. 
 
Problem Description  
 

The Problem here can be boiled down simply into the following: Lossy Compression 
using Neural Networks for the purposes of Facial Image Compression. The Key is to find a 
means in which we can reduce images down into lossy alternatives that are a fraction of the 
size of the original, so that we may deconstruct faces into a significantly smaller form and 
then recreate them for smaller file transfers. Unlike compression schemes such as PNG, 
information in the original image can be lost, hence “lossy” compression. Since we are 
boiling an image down into numbers and then reconstructing it again, we can not preserve 
everything, and as such, details will be left behind. Since we are attempting to reconstruct 
images of faces, this offers a unique challenge and lower leeway for failure. The Human face 
is a complex structure that is heavily reliant on the dimensions and proportions of its facial 
components. When deconstructing and reconstructing an image, even slight deviations in the 
jaw length, nose position, eye distance, skin contrast, lighting, hair style, ect will cause the 
reconstructed image to have less to even no resemblance to the original, or may even put the 
image inside of the “uncanny valley”. Simple items such as basic everyday objects do not 
suffer from such scenarios to the same extent, as their simple silhouette and visual profile 
makes it so if there are slight deviations, as long as the overall reconstruction is close to its 
original profile, it more likely than not appears to be acceptable. This is part of the challenge, 
as getting the network to identify key facial structures and patterns particular to each 
individual is a necessity in order to have the reconstruction bear any resemblance to the 
original. 
Contribution and Workload Distribution 
 

-​ Khoa: Skeleton Code, Variational Autoencoder skeleton code, Generative 
Adversarial Network training loop, hyper-parameter tuning the Generative 
Adversarial Network model. Paper contributions: Implementation section of 
the Deep Convolutional Generative Adversarial Network model and Future 
Works and Improvement. General consultation and proofreading. 



 

-​ Connor: Completion and Hyperparameter Tuning of Variational AutoEncoder, 
Paper Contributions Include Introduction, Problem Description, Alongside 
Related Works, Metrics Assistance, and Dataset Breakdown. Slideshow 
Creator, Video Editor, Demo Man. 

-​ Ethan: Evaluation of Variational AutoEncoder, Sourcing of Masked Images. 
Paper contributions: Evaluation Metric Tables, Discussion “Masking 
Efficacy”, Conclusion.  

-​ Sam: Discriminator for DCGAN, helped hyperparameter-tune DCGAN, demo 
code, Slideshow Presenter. 

 
 
Related Works 
 

Previous Works that attempted similar tasks to our include the (Hou, 2017), in which 
a Variational Autoencoder was used with a distinguished loss function. A pre-trained VGG 
network was employed to use the outcomes found at the 19th layer as a feature for the 
perceptual loss. The goal was to use a facial boundary map to deconstruct and then 
reconstruct the images. Their success with this method was mixed. 

A new, more experimental method for the compression and reconstruction of images 
is a VAE mixed together with Vector Quantization, where the vectors are learned over the 
course of training. The prototype vectors found in this network that have been determined by 
Vector Quantization are learned throughout the course of the training. One learned, a 
hierarchical level based system is employed where levels of representations and complex 
prior distributions of the latent space are used like self-attention layers. The network 
essentially considers all past successes and failures to train further and achieve a greater 
result (Vahdat, Kautz, 2020).  

Other common, albeit less effective approaches include the fusion of VAE with an 
accompanying Gaussian Mixture Model. This approach attempts to learn about adversarial 
loss to accompany the reconstruction loss, hoping to replace any element wise errors with 
errors that would instead be seen as more feature wise. The combination aimed to create a 
more complex version than standard single Guassian distributions in the hope that the 
increased complexity would be further reflected in the ability to detect better face features 
such as poses, age, and complexions (Qian et al., 2019). 

In more recent works, the (Toledo, Antonelo, 2021) paper attempted to combine all of 
these with an additional face mask component. The goal of the face mask was to help the 
training of VAEs for face reconstruction, by restricting the learning to the pixels selected by 
the face mask. This is ideal, as the background information is not present to clutter up the 
training and potentially throw off the results. Background information is often out of focus, 
blurry, or being obstructed by the subject in the foreground. This often leads to bad results as 
models tend to view this mishmashing of background colours as easy ways to mitigate loss, 
for example, a model may learn that just putting green in the background will mitigate loss 
between two images, since one takes place in an area filled with vegetation. As this is the 



 

most recent paper on the subject, we will consider this as the state-of-the-art model and act as 
the benchmark for our models’ performance.  

Additionally, we will make additional comparisons to common and popular lossy 
compression techniques used by other picture formats. The Joint Photographic Experts Group 
format, also known as JPEG, offers good size reduction when it comes to compression of 
image files to a smaller size but suffers from large losses to detail and image quality. This 
similarity will allow for useful comparisons between our model and standard, algorithmic file 
compression methods. (Santa-Cruz, Ebrahimi, 2000) 

 
Dataset 
 

A common dataset for facial images is CelebA, also known as CelebFaces Attributes 
Dataset and proposed by Liu et al. (2018), is a large-scale face attributes dataset with more 
than 200K different celebrity images, and was created and curated by the University of Hong 
Kong. Each image has around 40 attribute annotations, such as “Eyeglasses”, “Wearing Hat”, 
and “Wavy Hair” just to name a few. The Dataset offers a large variety of poses, background 
clutters, noise, lighting conditions, and facial angles. The Dataset features multiple ethnic 
races, as well as: 

-​ Over 10,000 Identities 
-​ Over 200,000 individual face images 
-​ Over 1,000,000 landmark locations, 5 per image 
-​ Over 8,000,000 total binary attributes 

 
Specifically we are using the “cropped & aligned” variation of the dataset, which 

features only faces that are cropped out and resized to 178x218 in the Joint Photographic 
Experts Group (JPEG) format (Wallace, 1992). We chose this specific variation as opposed to 



 

the full, uncompressed dataset due to its relatively small size of 1.8 Gigabytes, which allows 
it to be used on our computers which possess small storage space. However, it is important to 
note that JPEG is not a lossless compression technique. In other words, the images we are 
training and evaluating the model on are not raw images of faces, and can contain artifacts 
caused by the compression itself. However, experiments carried out by Schachner et al. 
(2023) showed that JPEG compression largely does not affect facial recognition. We theorize 
that such a method would retain the most identifiable facial structures, allowing our model to 
still effectively reach the goal of the project. 
Implementations 
 
Preprocessing 

 
The data is loaded from the dataset and preprocessed using TensorFlow Keras 

image_dataset_from_directory, which loads and processes the images for the encoder. The 
images from the dataset are resized to 64x64 pixels and the data is normalized by a scale of 
1/255. The dataset is split with a ratio of 10:1 for training and validation. The shuffle 
parameter is set to false to ensure consistency between runs. 

 
Convolutional Variational Auto-encoder (CVAE) 
 

a)​ Experimental setup: 
List your PC spec here, or describe the compute cluster we’re using. 

b)​ Model architecture: 
 
 



 

 
Figure 1: The Convolutional Variational 
Auto-encoder Generator model diagram 

for the encoder 

 
Figure 2: The Convolutional Variational 
Auto-encoder Generator model diagram 

for the decoder 

 
The architecture used is based on the Variational Auto-encoder from Kingma, D. & 

Welling M. (2022). The encoder is a convolutional neural network that takes data from the 
64x64 input image and encodes it into a latent variable with 512 data points. The decoder is a 
convolutional neural network that inputs the latent variable and decodes it into a 64x64 
image. The decoder mirrors the encoder in its architecture, as it is ideally designed to reverse 
the process of the encoder. 

c)​ Training Loop: 
The model is trained to minimise L1 loss between the input data and the data 

reconstructed from the latent variable. L1 loss also known as Mean Absolute Error or MAE. 



 

Assume a prediction matrix y of size n, and the ground truth matrix x of the same size, MAE 
is: 

 
​ Although the Variational Auto-encoder consists of two models: the encoder as seen in 
figure 1 and the decoder as seen in figure 2, the entire setup was trained as a single model 
using backpropagation for simplicity.  
 
Deep Convolutional Generative Adversarial Network (DCGAN) 
 

a)​ Experimental setup: 
​ The computer used to generate the final model is a desktop personal computer with 
the Ryzen 3700x CPU and RTX 3070 Ti running the Ubuntu operating system version 
22.04.1 LTS. Software-wise, Tensorflow version 2.14.0 is used alongside CuDNN version 
8600 to utilise the GPU for faster training time. The specific versions for all packages used 
were included in the submitted code in the “requirements.txt” file in pip-friendly format. 

b)​ Model architecture: 



 

 
Figure 3: The Deep Convolutional Neural Networks Generator model diagram with encoder 

(left) and decoder (right) 



 

 
Figure 4: The Deep Convolutional Neural Networks Discriminator model diagram 

The model architecture is based on the concept of Generative Adversarial Networks 
(GANs) as proposed by Goodfellow et al. (2014), which is very popular for generative tasks. 
Such a framework includes at least two models: the generator and the discriminator. The 
generator, as its name would suggest, generates data from an input, while the discriminator 
attempts to classify whether the data generated is real or generated. In practice, the GAN 
architecture is usually implemented as an extension of a VAE network, as the introduced 
discriminator often allows the generated data from such a network to appear more natural. 
This can be seen in our results section. 

In our implementation of a Deep Convolutional GAN, the generator architecture is 
highly reminiscent of the CVAE model described previously. However, some changes were 
made to it to improve GAN performance. For example, it has more than double the 
parameters: 973,443 parameters vs 443,491. This is because earlier testing showed the 
discriminator overpowering the generator early on and causing an early convergence where 
the generator has yet to be able to generate proper facial structures. 

The discriminator architecture in this case is just a simple Convolutional Neural 
Network meant to classify generated images and real images. The model itself was tuned 
specifically for use in a GAN setup, rather than individually as the success of a GAN is 
dependent on the generator and discriminator learning at the stable rate to not overpower one 



 

another as described by Goodfellow et al. (2014). Accordingly, the model’s depth and 
parameter count was specifically tuned via trial and error in order to not overpower or be 
overpowered by the generator. 

c)​ Training Loop: 
A traditional GAN setup would train the generator to maximise the discriminator loss 

and minimise the generator loss (Saxena, Cao, 2021). Because the generator follows the exact 
same architecture as the previously talked about CVAE model, the generator is trained in 
almost the exact same way, with the only difference being the addition of the discriminator 
loss in the equation.  

The discriminator loss is given as Binary Cross-entropy loss, which is popular for 
binary classification tasks. Assume the probability of a point in the prediction vector p being 
1 is y and, similarly, the probability of a point in the ground truth vector q being 1 is y hat, the 
Binary Cross-entropy between p and q is: 

 
However, in this project, we find that our GAN setup suffers from model collapse as 

described by Saxena and Cao (2020). Case in point, the generator would only attempt to trick 
the discriminator instead of trying to recreate the original image. We theorize this is because 
of the small values returned by the generator due to normalization of the image as mentioned 
in preprocessing. As the image’s data only contain floating point values in the [0, 1] range, 
the generator loss returned during training can be very small, even if the images generated 
look nothing like the original. Because of this, we scaled the generator loss by a factor of 10 
to give it more weight in training. This largely resolved the issue. 
​ Another potential solution for this issue as discussed by Toledo and Antonelo (2021) 
is to de-normalize the images before evaluating loss by scaling all pixels by a factor of 255. 
This allows loss to be evaluated on data in the [0, 255] range, and by extension making the 
loss value a lot more significant. In addition, background masking can be implemented 
during training to allow the loss to be focused on just the face instead of the background, 
which, ultimately, is what we care about. This is significant as we will show later on in 
Results. This method is the main thesis of Toledo and Antonelo’s 2021 paper and is shown to 
be very successful. 
 
Training Variables and Testing 



 

 
Figure 3: Training loss over time for CVAE (left) and DCGAN (right) 

We trained the Conv-VAE model for 10 epochs and the DCGAN setup for 30 epochs 
on the preprocessed data in batches. Specifically, we used 100 images per batch to allow 
computers with less memory to run it. Moreover, we also split the data into training and 
evaluation sets with a 90-10 split. No early stopping condition was implemented, the number 
of epochs was decided upon via observation of the loss curve seen in Figure 3. For validation 
specifically of the CVAE model, we run the model on a number of examples in the test set 
and calculate the average MAE score (the lower the better). As for the DCGAN model, we 
validate the model visually by comparing the original and the reconstructed image generated 
every epoch. We focus on comparing the visual quality of the reconstructed image and the 
original as well as the identifiability of the reconstructed face, which we believe is the most 
important quality to achieve our goal. 

 
Results 
 
Metrics 
 
​ In order to evaluate the quality of the generated images with respect to the images 
they were meant to mimic, two conventional methods would be L1 (Mean Squared Error or 
MSE) and L2 (Mean Absolute Error or MAE). L1’s and L2’s are calculated with the 
formulas: 

                        
Whereas yi is the predicted value, xi is the true value, and n is the total number of data 
points. 
 

 



 

Whereas n is the number of data points, Yi is the observed values, and Ŷi is the predicted 
observations. 
 

Wang and Bovik (2009) cited MSE’s simplicity and cheap computation cost as the 
main reasons behind its popularity. Moreover, due to its popularity, it is considered a standard 
for comparing algorithms. On the other hand, MAE is also commonly used alongside MSE. 
Unlike MSE, MAE does not increase punishment based on the error itself, which allows it to 
be more useful when outliers are present. Experiments by Zhao et al. (2016) have also shown 
that MAE can outperform MSE in certain tasks. 

Beyond this, we also employed the Structural Similarity Index (SSIM) as well as its 
extension Multiscale Structural Similarity Index (MS-SSIM) to quantify the perceptual 
quality of an image (Wang et al. 2003). These metrics often complement MSE and MAE as 
they often do not correlate well with the perceived quality of images. 

Toledo and Antonelo (2021) also incorporated two other evaluation paradigms: 
Learned Perceptual Image Patch Similarity (LPIPS) and the Visual Information Fidelity 
(VIF). However, VIF requires authorization from its authors, while LPIPS require the training 
of an extra model, which lies beyond the scope of this project. Fortunately, these metrics are 
still new and still relatively uncommon so our evaluation will not suffer significantly. 

 
Evaluation 
 

Our evaluation schema consisted of 6 methods, 4 of them use the models we have 
built with and without masking, the final is standard JPEG compression algorithm with a 
quality retention of .85 with and without masking. These hypotheses are denoted with the 
subscript of the model architecture and “Mask”. The motivation behind this is to understand 
the quality of specifically the faces and the limits of encoding efficiency. The images from 
Toledo and Antonelo (2021) are presented first, then the CVAE and DC-GAN model after in 
said order. 

 



 

 
 
 

 



 

 
 
​ ​ ​ ​  
Discussion 
 
Cause for higher MSE loss in masked images 
 

Comparing the results, it is observed that the application of masking notably increases 
the MSE, while simultaneously decreasing the MAE, SSIM, MS-SSIM metrics. This 
phenomenon can be attributed to several factors. Firstly, the absence of a simplistic 
background, which is generally easier to predict, can augment MSE. In cases where the 
background is a uniform colour, such as white, and contrasts with an average facial 
representation, the model might achieve deceptively lower error rates. However, when 
masking is employed in evaluation, the model's focus is redirected exclusively to facial 
features, which are inherently more complex and detailed, including elements like wrinkles, 
freckles, and structural asymmetries. This refocusing of the models learning on facial features 
by removal of background is similarly mentioned in Toledo and Antonelo (2021) where their 
architecture is described as being specifically built to ignore background information and 
focus on important facial features. 

Additionally, the process of masking could inadvertently omit crucial facial features 
due to partial obstructions in the original image, such as hands covering parts of the face, hats 
casting shadows, or hair partially obscuring the face. This facet of masking is commonly 
referred to as aliasing, where a mask omits or includes distortion or irregular features that 
interferes with an image's predictability. Jonscher, M et al. (2022) touches on this subject 
where an emphasis is made on the need for masking that does not cause any aliasing. The 
omissions caused by aliasing can lead to a loss of important contextual information, 
potentially impacting the model's ability to accurately reconstruct facial features and thus 
contributing to a higher MSE.  
 
Comparison to original papers model 



 

 
In comparison to the original paper's model, the model proposed in this paper is able 

to compress images while retaining higher quality. In all shared metrics between papers our 
model consistently results in significantly lower MAE, MSE, SSIM, and MSSIM. Although 
our model beats their model in performance, our smaller initial image size reduces the overall 
amount of pixels needed to be compressed for the final image. Our model reduces a 64x64 
image to 512, while the original paper reduces a 128x128 to 512. This smaller compression 
ratio means our model can learn more features from the original image that can be 
satisfactorily reproduced in the output images. Our model exchanges  image quality for image 
quality. 
 
Comparison to current image compression standards 
 
Lossy image compression is ubiquitously associated with JPEG. In order to provide a 
pragmatic view on artificial neural network methods of image compression such as the CVAE 
and DCGAN models used in this paper, JPEG image compression with a quality of .85, was 
compared with our models. It is evident that JPEG compresses the image with much less 
structural loss than any model presented in this paper or Toledo and Antonelo (2021). While 
considering the effectiveness of JPEG image compression based on our evaluation it is 
important to note how masking affects the MAE and MSE of any lossy image compression. 
Even with a standardised and proven method of compression, the application of masking will 
inherently skew MAE and MSE evaluations of imagery. This reinforces the need for 
alternative metrics, such as, for evaluating how similar reconstructed images are to the human 
visual system as described in Hang Zhao et al. (2015).  
 
Future Works and Improvements 
 

Although our models exceeded initial expectations, it still cannot compare to that of 
Toledo and Antonelo (2021). There are a few possible improvements that can be made to the 
DCGAN model, which we deem vastly superior to the CVAE model in terms of quality. 

1.​ Incorporating masking to the training method. This was proven to be highly 
effective and the main contribution from Toledo and Antonelo. 

2.​ Exploring other loss functions. Currently we are using L1 loss, however, with 
more time, it might be beneficial to explore L2, as well as SSIM and MSSIM. 

3.​ Investigate the discriminator’s peculiar behaviour. As seen in the training loss 
history chart, the discriminator features an almost completely flat loss curve 
that does not change over time. Although there is a good chance this does not 
affect the performance of the model, it is worth investigating. 

4.​ Explore higher compression ratios. We want to hit a ratio close to that of 
Toledo and Antonelo’s model to better compare performances.  

5.​ Train existing models on raw, uncompressed data. The only reason this was 
not done already is because of time and storage constraints of the system we 
possess. 



 

 
Conclusion 
 

The findings presented in this paper indicate that both the CVAE and DCGAN are 
capable of significantly reducing image size while preserving aspects of perceptual quality 
found in the original image. With the CVA model in particular being excellent at image 
quality preservation while simultaneously compressing the image. In comparison to the 
model presented in (Toledo, Antonelo, 2021), our model results in higher compression, albeit 
at the cost of feature loss.  

The application of facial masking in testing highlighted the importance of focusing 
the face contained in the image in order to improve image reconstruction. Although masking 
presented increases in MSE, SSIM, MS-SSIM and MAE were all thoroughly increased with 
the application of masking.  

The higher quality reconstructions that masking produced indicates room for future 
improvement. Implementing masking in the training, as well as exploring alternative loss 
functions and compression ratio could provide further improvement to the model. Further, 
these tunings could provide insights into broader application towards image compression 
technology.  

In conclusion, our work contributes to understanding the application of CVAE and 
DCGAN models in image compression, suggesting that neural networks hold promising 
capability in the efficient compression of images.  
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