Allowing Wake Lock to Serve
Browser Process Clients

The goal of the below changes is to:

Allow for creating PowerSaveBlockers with arbitrary (type, reason, description)
parameters in the WakeLockContext mojo interface while keeping the implementation as
simple as possible

Allow for replacing browser process usage of PowerSaveBlocker with usage of the Wake
Lock mojo interface

Continue to support having one PowerSaveBlocker per WebContents in which all
connections from frames associated with that WebContents are coalesced

The way in which the below changes accomplish the goal is to:

Move to a 1:1 mapping between PowerSaveBlocker and WakelLockServicelmpl

Allow WakelL ockService to serve an arbitrary number of clients, whose requests to
block/unblock wake lock are coalesced in a similar fashion as WakeLockServiceContext
does currently

New Mojo Interfaces

wake_lock_context_provider.mojom

o GetWakeLockContextForlD(id)

o GetUnassociatedWakeLockContext()
wake_lock_context.mojom

o GetWakeLock(WakeLockServiceRequest&, reason, description, type)
wake_lock_service.mojom

o RequestWakeLock()

o CancelWakeLock()

o AddClient(WakeLockServiceRequest&)

Wake Lock Impl Changes

WakelLockServicelmpl now maintains a PowerSaveBlocker internally as well as a

BindingSet for inbound requests.
o The bulk of WakelLockServiceContext moves into this class

o We’'ll need to use the Context feature of BindingSet in order to track whether
there is a wake lock request outstanding on a per-client basis, as
WakeLockServicelmpl is currently doing

e WakelLockServiceContext simply holds onto its context ID and passes that to a
WakeLockServicelmpl that it creates in GetWakeLock().
e There is a special null ID that is used by GetUnassociatedWakelLockContext().

//content Changes

e RenderFrameHostDelegate
o Has ConnectToBlinkWakelLock(WakeLockServiceRequest& request) interface
o No longer has GetWakeLockServiceContext() method
e WebContentsimpl
o Has a WakeLockServicePtr blink_wake lock_ivar
o Implements ConnectToBlinkWakeLock(request) as follows:
m Initializes blink_wake_lock_ if necessary via wake_lock_context_host_
m Calls blink_wake_lock_->AddConnection(request)
e RenderFrameHostimpl
o Binds RenderFrameHostDelegate::ConnectToBlinkWakelLock() as the factory
function for the WakeLockService mojo interface
e WebContents
o Has a device::mojom::WakeLockContext* GetWakeLockContext() method

Browser Process Usage

With Access to a WebContents

e Call web_contents->GetWakeLockContext()->GetWakeLock(request, reason,
description, type)

Without Access to a WebContents

e Connect to the Device Service and obtain a WakeLockContextProviderPtr
e Call GetUnassociatedWakeLockContext() on the WakeLockContextProvider
e Get the WakelLock from that unassociated context

	Allowing Wake Lock to Serve
	Browser Process Clients
	New Mojo Interfaces
	Wake Lock Impl Changes
	//content Changes
	Browser Process Usage
	With Access to a WebContents
	Without Access to a WebContents

