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This design document presents the new Late Load Elimination for Turboshaft, and in particular 
how the state is tracked: how we compute and track aliases, how we offer efficient lookup of the 
value at a memory location, how we efficiently invalidate whole memory regions/groups. 

Background and Overview 
The goal of Load Elimination is to remove loads when we statically know the result. For 
instance, 

x[0] = 42; 

return x[0]; 

can be optimized by the Load Elimination to 

x[0] = 42; 

return 42; 

 
The main difficulty comes from the fact that any values could alias, and we thus have to always 
take a conservative approach. For instance, in this example: 

x[0] = 42; 

y[0] = 17; 

return x[0]; 

we can’t optimize the return x[0], because the store to y could have overwritten the one to x. 
 
Similarly, if we have: 

x[0] = 0; 

x[1] = 1; 

x[2] = 2; 

x[i] = 42 

Upon reaching the last line (x[i] = 42), we have to “forget” everything we know about x, since 
this last store could have overwritten any of x[0], x[1] or x[2] (or it could have written 
elsewhere). 
 
We thus have 2 challenges to solve: 



●​ Efficiently tracking the state, so that it’s cheap to look up existing data, and it’s also 
cheap to invalidate large amounts of data at once. 

●​ Tracking aliases so that we have fewer things to invalidate 

Efficient Lookup and Invalidation 
We define a MemoryAddress as a tuple of <OpIndex base, OpIndex index, int32 offset, 
uint8 element_size_log2, uint8 size>, where the actual address is obtained by doing 
base + offset + index * 2^element_size_log2 (and the stored/loaded value has size 
size).  
Note that most stores and loads have an Invalid index and a valid offset. Loading/storing fields 
from/in an object for instance is always done with a constant offset rather than an index. 
The main exception will be in loops, where it’s common to have a loop iterator being used as an 
index (to load/store from/in an array). 

Lookup 
We maintain a global hashmap (called all_keys_), which maps from MemoryAddress to 
Snapshot Table Keys. From a Key, the Snapshot Table offers O(1) lookup of the value. We can 
thus set and lookup a value at a MemoryAddress in O(1) time. 

Invalidation 
Here are the following cases that we need to handle: 

1.​ When writing at a base that doesn’t alias with anything (see the Alias Tracking section) 
at a MemoryAddress with a valid Index, we need to invalidate everything at this base 
(because the value of the Index could be anything, and it could thus overwrite previous 
stores with invalid Index and valid Offsets. 

2.​ When writing at an offset in a base that could alias, we need to invalidate 
a.​ Every store at the same offset, regardless of their base (except for bases that are 

known to have no aliases) 
b.​ Every stores at a valid Index (except for bases that are known to have no aliases) 

3.​ When written at a valid Index in a base that could alias, we need to invalidate the whole 
state (except for bases that are known to have no aliases). We do the same thing when 
calling a function (since this function could a priori write anything anywhere in memory). 

 
For 1, we need a way to efficiently access all of the Keys for a given base, and for 2, we need a 
way to efficiently access all of the Keys for a given offset. 
 
We thus have a Hashmap mapping each base to a linked list of all of the Keys for 
MemoryAddresses at this base (base_keys_), and another Hashmap mapping each offset to a 
doubly-linked list of all of the Keys for MemoryAddresses with this offset (offset_keys_). To 
reduce the memory overhead of these doubly-linked list, they are implemented intrusively in the 



Keys themselves: each Key has prev_same_base, next_same_base, prev_same_offset, 
next_same_offset pointers. Furthermore, to be able to remove from these lists without having 
to do a lookup in base_keys_/offset_keys_ to lookup the list head, the prev pointers of each 
Key do not point to the previous Key, but rather to the corresponding next field of the previous 
Key (and to the head_ field of the List object in the case of the 1st item of the list). The 
implementation of these intrusive doubly linked lists was extracted to doubly-threaded-list.h. 
 
MemoryAddresses with a valid Index are not stored in offset_keys_ though, since they need 
to be invalidated for stores at any offset. Instead, we keep them in a global doubly-linked list 
called index_keys_. This list uses the prev_same_offset and next_same_offset fields of the 
corresponding keys, since they are not otherwise used for MemoryAddresses with valid Indices. 
 
When writing to a MemoryAddress with an invalid Index and a non-aliasing base, we just need 
to invalidate the exact same MemoryAddress and all of the MemoryAddresses at the same base 
that have valid Indices. To avoid having to iterate through all of the MemoryAddresses of this 
base in such cases, base_keys_ doesn’t contain one doubly-linked list per base, but rather two: 
one called with_offsets, and the other one called with_indices. The former contains all of 
the MemoryAddresses with invalid Indices, and the latter contains all of the MemoryAddresses 
with valid Indices.  
 
The following picture illustrates the state of these structures after a few stores have been 
performed (assuming that we knew that a and b didn’t alias, and that 0 and i didn’t alias either 
(otherwise we would only have b[i] = 27 in the state at the end)). 
Dotted lines are used for “previous” pointers. Pointers related to base_keys_ are in purple, and 
pointers related to offset_keys_ are in green (and a darker green for the few pointers related 
to index_keys_). 
 



 

Alias Tracking 

Fresh Objects 
Freshly allocated objects (ie, produced by an AllocateOp) never alias with anything. We thus 
keep track of these objects in a Snapshot Table called non_aliasing_objects_. We drop this 
information if: 

●​ The object is stored somewhere (= it’s the value of a StoreOp). 
●​ The object is merged by a Phi 
●​ The object is passed to a function call that has the can_write Effect. 

 

Map Checks 
Two objects with different maps can never alias. Thus, we keep track of object maps in the 
object_maps_ Snapshot Table, and before invalidating for an offset/index store, we check the 
maps of the destination and of the potential base to invalidate: if they both have distinct known 
maps, then we do not invalidate. 
 



Note that LateLoadElimination runs after MachineLoweringReducer, which removes the 
CheckMaps. To still preserve map information, we added a new AssumeMap operator, which 
MachineLoweringReducer inserts after the lowerings of CheckMaps. 
 
Furthermore, storing all of the potential maps for an object would 1) require dynamically 
allocating zone memory and 2) could be a bit expensive when comparing the maps of 2 objects. 
We thus opted for a compact version of this: for each object, we just store the bitwise or and the 
bitwise and of all of their possible maps. If the and of object A has a bit set that the or of object 
B doesn’t have set, then it means that all of the maps of A have a bit that none of the maps of B 
have, which means that objects A and B have different maps. (this logic implemented in the 
MapMaskAndOr class) 

Performance 
Turbofan’s Load Elimination has a few limits to prevent excessive compile times on corner 
cases (such as the benchmark I’m using in this section): 

●​ A limit on the number of fields tracked per object (32) 
●​ A limit on the number of objects tracked (100) 
●​ A limit on the number of total fields tracked (300) 

The second and third limits are easy to change. However, the 1st one is used to have O(1) 
access to the fields of an object by offset: there is an array of values per object, where the value 
at offset n of the object is stored at offset n in this array. Increasing this limit increases memory 
usage (since there is an array of size 32 reserved for each base), which could also regress 
performance.  
For this test, I’ve removed the 2nd and 3rd limit, and set the 1st one to 128 instead of 32 (which 
still means that a lot of fields won’t be tracked, since objects will have several hundreds of 
fields). 
 
A good function to compile to test Load Elimination is one that copies an object field-by-field, as 
the generated code will have to resize the backing store of the destination every 3 fields: 

let out = {}; 

out.a0 = in.a0; 

out.a1 = in.a1; 

out.a2 = in.a2; 

… 

(see Issue 14133: Slow TF compilation for functions that do a lot of transition stores to the same 
object for details about this behavior) 
I’ve compared the time needed for Turbofan’s LoadElimination and this new Turboshaft 
LateLoadElimination, depending on the number of fields that we copy in the function (when 
testing Turboshaft’s LateLoadElimination, I disabled Turbofan’s LoadElimination, to make sure 
that Turboshaft doesn’t benefit from it): 
 

https://bugs.chromium.org/p/v8/issues/detail?id=14133
https://bugs.chromium.org/p/v8/issues/detail?id=14133


Fields copied Turbofan time Turboshaft time Turboshaft speedup 

100 5ms 0.5ms x10 

300 360ms 5ms x72 

400 1350ms 10ms x135 

500 3150ms 20ms x156 

600 6500ms 40ms x162 

700 10250ms 65ms x157 

800 16850ms 105ms x160 

900 25400ms 140ms x181 

1000 33500ms (1.56GB) 175ms (92MB) x191 

(note that the graph size is growing quadratically in the number of “fields copied”) 
 
Keep in mind that Turbofan’s LoadElimination is still not eliminating most of the loads because 
of its limit on the number of fields per object tracked. As a result, the graph is larger that it could 
be, leading in worst compile time late in the pipeline, in particular during the AssignSpillSlots 
phase of the register allocator (1.3sec for 700 fields,  2.1sec for 800 fields, 2.9sec for 900 fields, 
4.2sec for 1000 fields). With Turboshaft’s LoadElimination, this AssignSpillSlots phase never 
takes more than 15ms (although the AllocateGeneralRegisters phase becomes slightly more 
expensive (400ms instead of 200ms, since more things are in register rather than memory)). 
 
I also benchmarked the generated code: with 700 fields, the code generated by Turbofan is 
about 1.66 times slower than the one generated by Turboshaft. (once again, this is because 
Turbofan does not actually track the whole state) (this does not include compilation time) 
 
A note on the increased “number of fields per object tracked” limit of Turbofan: when setting it to 
its regular 32 (instead of the 128 I used for this benchmark), Load Elimination time for TS goes 
down to 10.5sec (instead of 33.5) and memory usage to 445MB (instead of 1.5GB). However, 
this means that even fewer loads are eliminated. 
 
Small disclaimer still: Turbofan’s LoadElimination does a bit more than Turboshaft, since it also 
performs Check elimination (checks have been lowered by the time we reach Turboshaft’s 
LateLoadElimination, so it would make no sense to do it there as well), but this really is not the 
reason for the speed difference :D 
 



Miscellaneous 

Overlapping Stores 
TL;DR: we don’t support TypedArrays/DataViews/ArrayBuffers, and other than that, stores can’t 
overlap in any dangerous way. 
 
Imagine that a graph does the equivalent of: 

((char*)arr)[5] = 42; 

((int*)arr)[1] = 0; 

 
Which visually means: 

 
 

The MemoryAddress for the 1st Store will be {base:arr, offset:5, size:1}, and for the 
2nd it will be {base:arr, offset:4, size:4} (ignoring Index and element_size_log2 
which are not used here). Given the addresses, it looks like these Stores don’t alias (since they 
have different offsets), which means that we won’t invalidate the 1st one when processing the 
2nd one, and a future Load from ((char*)arr)[5] would incorrectly return 42. 
 
There are 2 cases were this could happen in JavaScript: 

●​ TypedArrays/DataViews 
●​ Strings 

 

TypedArrays / DataViews 
There are two cases where TypedArrays/DataViews stores could overlap: 

const u32s = Uint32Array.of(3, 8); 

const u8s = new Uint8Array(u32s.buffer); 

u32s[0] = 0xffffffff; 

u8s[1] = 0; // Overlaps with previous store! 

And: 

let buffer = new ArrayBuffer(10000); 



let ta1 = new Int32Array(buffer, 0/*offset*/); 

let ta2 = new Int32Array(buffer, 100*4/*offset*/); 

ta2[0] = 0xff; 

ta1[100] = 42; // Same destination as the previous store! 

 
The 1st case could be dealt with: invaliding an address during LoadElimination could invalidate 
every other (potentially aliasing) addresses at the same offset as well as with offsets from -7 to 
+7 (the maximum size of array elements is 8, so things can’t alias in this way with elements that 
are further than 7 offsets away). 
However, the 2nd case can’t really be dealt with: any 2 stores with different bases could alias 
regardless of their offsets. We have thus no choice but to not perform Load Elimination for 
TypedArrays/DataViews. 
 
In the Turboshaft graph, all TypedArray Stores and Loads will be StoreTypedElement and 
LoadTypedElement (LoadDataViewElement/StoreDataViewElement for DataViews). They are 
lowered to regular Stores/Loads during MachineLoweringReducer, which runs before 
LateLoadElimination, and I added a always_canonically_accessed field to LoadOp::Kind, 
which we set to true for TypedArray/DataView loads/stores during this lowering (for regular JS 
stores/loads, this will be false). 
During LateLoadElimination, when we encounter a Store offset x with a can_overlap bit set to 
true, we ignore it. 

Strings 
The only other case of overlapping Stores is for Strings: Strings are 0-padded on the right, so 
that we can efficiently compare them 32-bit by 32-bit. What could happen is a 32-bit Store of 0, 
followed by other stores of single characters (8 or 16 bits), followed by a read (32-bit if for a 
comparison, or 8/16-bit if for something else). This is not an issue with the current 
implementation, since we will never try to load from the string before we’ve finished writing it, 
and it’s guaranteed that at least one of the character Stores will invalidate the padding Store 
(because at least the 1st byte of the 32-bit padding has to be a character of the string, otherwise 
we would not have allocated these 32 bits). 

https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/operations.h;l=4224;drc=1d8fadb37e70dfd4cb4747729040c0b011a25b8f
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/operations.h;l=4130;drc=1d8fadb37e70dfd4cb4747729040c0b011a25b8f
https://source.chromium.org/chromium/chromium/src/+/main:v8/src/compiler/turboshaft/machine-lowering-reducer.h;l=1959;drc=32e2c6014d0daded58a1164ffc586e2e2890eb3a
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