BC Calculus Assignment 8.3

L'Hôspital's rule and relative rates

1. To do L'Hôspital's Rule, you find a	by taking the	of the top
and bottom of a fraction		

- 2. L'Hôspital's Rule only applies if you're evaluating a limit that gives you or —.
- 3. When f(x) grows faster than g(x), $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \underline{\hspace{1cm}}$.
- 4. When g(x) grows faster than f(x), $\lim_{x \to \infty} \frac{f(x)}{g(x)} =$ ______.
- 5. When f(x) and g(x) grow at the same rate, $\lim_{x \to \infty} \frac{f(x)}{g(x)} = a$ ______.

Circle the function that grows faster, or if they grow at the same rate, write "same rate".

6.
$$x^2$$
 and $5x^2$

7.
$$5x^2$$
 and x^3

8.
$$x^3$$
 and 3^x

9.
$$\ln x$$
 and \sqrt{x}

10. Put the following functions in order of growth, from slowest to fastest, given a > 1:

$$x^{a}, x^{-a}, x^{1/a}, a^{x}, x!, \log_{a}x, ax$$

11.
$$\lim_{x \to 0} \frac{4e^x - 4}{x}$$
 is

12.
$$\lim_{h \to 0} \frac{2e^h - 2}{5h}$$
 is

13.
$$\lim_{x \to 2} \frac{\sin(x-2)}{2e^{x-2} - x}$$
 is

14.
$$\lim_{x \to 0} \frac{e^x - \sin x - 3x - 1}{4x^2 - 6x}$$
 is

15.
$$\lim_{x \to 0} \frac{x^2}{x - \sin x}$$
 is

16. If a and b are positive constants, then
$$\lim_{x \to \infty} \frac{\ln(bx+1)}{\ln(ax^4+4)} =$$

17. Which of the following limits are greater than 0? Circle all that apply

I.
$$\lim_{x \to 0^{-}} \frac{|x|}{x}$$

II.
$$\lim_{x \to 3} \frac{x^2 - 7x + 12}{3 - x}$$

III.
$$\lim_{x \to \infty} \frac{1-x}{1+x}$$

х	f(x)	f'(x)	f''(x)	f'''(x)
2	0	0	5	7

18. The third derivative of the function f is continuous on the interval (0, 4). Values for f and its first three derivatives at x = 2 are given in the table above. What is $\lim_{x \to 2} \frac{(x-2)^2}{f(x)}$?

19.
$$\lim_{x \to 3} \frac{\int_{0}^{x} e^{3t} dt}{\int_{0}^{3} e^{3t} dt}$$
 is

20. Let g be a continuously differentiable function with g(-2) = 4 and g'(-2) = 6. What is $\lim_{x \to -2} \frac{\int_{-2}^{x} g(t) dt}{g(x) - 4}$?

21. For which of the following does $\lim_{x \to \infty} f(x) = \infty$?

$$I. f(x) = \frac{\ln x}{x^{99}}$$

II.
$$f(x) = \frac{e^x}{\ln x}$$

II.
$$f(x) = \frac{e^x}{\ln x}$$

III.
$$f(x) = \frac{x^{99}}{e^x}$$

- 1. Consider the differential equation $\frac{dy}{dx} = y^2(2x + 2)$. Let y = f(x) be the particular solution to the differential equation with initial condition f(0) = -1.
- (a) Find $\lim_{x\to 0} \frac{f(x)+1}{\sin x}$. Show the work that leads to your answer.

1: L'Hospital's Rule

1: answer

(b) Use Euler's method, starting at x = 0 with two steps of equal size, to approximate $f(\frac{1}{2})$.

1: Euler's method

1: answer

(c) Find y = f(x), the particular solution to the differential equation with initial condition f(0) = -1.

1: separation of variables

1: antiderivatives

1: constant of integration

1: uses initial condition

1: solves for y

- 2. Let f be the function given by $f(x) = 2xe^{2x}$.
- (a) Find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$.
- $1: \lim_{x \to \infty} f(x)$
- $1: \lim_{x \to -\infty} f(x)$

- (b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.
- 1: solve f'(x) for appropriate value
- 1: evaluate f at critical point
- 1: justify absolute minimum value

