
Essential Apps Script livecoding 2 walkthrough: ​
Ongoing livecoding project (part 1)

This walkthrough guide accompanies the Essential Apps Script 2: Ongoing livecoding
project (part 1) video and the Essential Apps Script guide. You can use the video, this
document, or both, to help you do this livecoding exercise.

We are going to build up a project over three parts, livecoding together the bits of Apps
Script needed to expand our project as we learn more features of Apps Script. For the first
part, we are going to learn how to get the data from a row of a spreadsheet, based on
which row the user is clicked on.

Livecoding instructions

1.​ Firstly, make sure you're in the Google Drive folder you've set up for the Essential
Apps Script course, then create a new spreadsheet using the New button > Google
Sheets.

2.​ Once your spreadsheet has opened, rename it to something sensible like 'Ongoing
livecoding project 1'. There also needs to be some data in the spreadsheet to work
with, so make two columns of data, one with the heading 'Name' and one with 'Shoe
size'. Put a row of data in (it doesn't matter what the data is!).

3.​ Open the Apps Script editor from Extensions > Apps Script then rename the project
to the same name as the spreadsheet.

4.​ Now, rename the script file to getRowData by clicking on the three dots next to the
file name, then Rename. Then, change the function name from myFunction() to
getRowData() to match.

5.​ Put your cursor at the end of the line (after the opening curly brace {) and hit Enter
a couple of times to make some space, then press the save button. You should
have something like:​
​
function getRowData(){​
​
​
}

6.​ The first part of the code is going to get the spreadsheet and the sheet. On a new
line, create a comment using two forward slashes // and then write something like
'get the sheet' so we know what these lines are going to do.

7.​ Hit Enter so we can create our variable to store the spreadsheet in, as with any Apps
Script code bound to a spreadsheet. As it is a variable, write var followed by a
space, then ss because we are working with a spreadsheet, then another space

https://www.youtube.com/watch?v=V75um-dc3jA
https://www.youtube.com/watch?v=V75um-dc3jA
https://subjectguides.york.ac.uk/apps-script

and an equals sign. Then, we will use the SpreadsheetApp and then the command
.getActiveSpreadsheet() and then end the line with a semi colon.

8.​ Hit Enter so we can now create a variable to store the sheet in. Usee var to create a
variable and call it sheet then equals sign ss.getSheetByName() so we can get a
specific sheet. Inside the brackets put your sheet name inside single or double
quotes, as it is a string (at this point, it can be useful to rename the sheet in your
spreadsheet to data to make it easier to recognise than 'Sheet1'). End the line with a
semicolon and save your file.​
​
function getRowData(){​
​
 // get the sheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
 var sheet = ss.getSheetByName('data');​
​
}

9.​ Next, hit Enter twice to leave some space and then put another comment using two
forward slashes // for 'get the active row number so we can use it' as that's what
we're going to do next.

10.​Hit Enter to start a new line and then create a new variable using var and call it
rowNumber then do an equals sign = to assign it a value. We're going to use the
sheet and then find the active cell, so it'll be sheet.getActiveCell(). We don't just
want the active cell, we want the row it is on, so add a .getRow() to chain together
another command and then end the line with a semicolon. Hit save.​
​
function getRowData(){​
​
 // get the sheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
 var sheet = ss.getSheetByName('data');​
​
 // get the active row number so we can use it​
 var rowNumber = sheet.getActiveCell().getRow();​
​
}

11.​ Hit Enter twice to do our third and final comment. Two forward slashes then 'get the
row data and log it', then hit Enter again.

12.​Our final variable is going to be rowData, so var rowData = and then we're going to
use the sheet again to get the range and then get the specific row and its values.

a.​ Write sheet.getRange() and then we're going to put values inside the
brackets to define our range.

b.​ We are going to start with the row and column we want the range to start
from, which in this case with be our variable rowData and the first column, 1,

so it will be rowData, 1 separated by a comma (and a space, just for
readability).

c.​ Next, we can define how many rows and columns we want, also separated by
commas. So we only want a single row, 1, and then we want as many columns
as we have in our data, so that's 2.

d.​ As getRange only gets the range, not the values themselves, we now need to
go outside of the brackets and add .getValues() making sure there's the
plural 'values' because we have more than one cell.

e.​ When using getValues, our data is automatically put into a two-dimensional
array, which means one array filled with other arrays. As we only have a
single row, we only want the first array from within that overall array, so we
can end our line with index 0 using [0] to ensure we only have one array to
work with (see our arrays guidance and exercises for more on this
numbering).

13.​Finally, hit Enter to start a new line and then log the value of rowData using
Logger.log(rowData) and end the line with a semicolon. Your code should look
something like (without the line break when creating rowData, that's just the limits
of the page size here):​
​
function getRowData(){​
​
 // get the sheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
 var sheet = ss.getSheetByName('data');​
​
 // get the active row number so we can use it​
 var rowNumber = sheet.getActiveCell().getRow();​
​
 // get the row data and log it​
 var rowData = sheet.getRange(rowNumber, 1, 1, 2).getValues()[0];​
 Logger.log(rowData);​
​
}

14.​Hit Save, then go back into your spreadsheet and check you are clicked on your row
of data before you run the code, as otherwise it won't give the right output. Use the
Run button at the top of the script editor to run your code, go through the
authorisation prompt because this is a new script project, and then your code
should run.

15.​Check the execution log to see if the data in your row appears. If not, double check
your code, and also make sure you are clicked on that row in the spreadsheet
before running the code.

You're now ready to move on to adding a menu in section 1 and then the first project!

https://subjectguides.york.ac.uk/apps-script/basics#s-lg-box-wrapper-19103933
https://subjectguides.york.ac.uk/apps-script/basics#s-lg-box-wrapper-19103881

Reference: full code from exercise

function getRowData(){​
​
 // get the sheet​
 var ss = SpreadsheetApp.getActiveSpreadsheet();​
 var sheet = ss.getSheetByName('data');​
​
 // get the active row number so we can use it​
 var rowNumber = sheet.getActiveCell().getRow();​
​
 // get the row data and log it​
 var rowData = sheet.getRange(rowNumber, 1, 1, 2).getValues()[0];​
 Logger.log(rowData);​
​
}

	Essential Apps Script livecoding 2 walkthrough: ​Ongoing livecoding project (part 1)
	Livecoding instructions
	Reference: full code from exercise

