
ISA Documentation

Computer Architecture Documentation

Machine Specifications
Registers

8 Registers
●​ 6 General Purpose Registers
●​ R7 (RSP) is not directly accessible and is the Stack Pointer
●​ R8 (RIP) is the Instruction Pointer Register

Memory

●​ 16-bit addresses (Big-Endian)

Instruction Set

●​ 16-bit values and memory addresses
●​ OpCode byte is split into two nibbles (category - instruction)
●​ False: 0x0000​​ True: 0xFFFF

○​ JMPT jumps as long as the value in RCondition is NOT 0
●​ General Purpose Registers labeled R0 - R6

○​ RSP: Stack Pointer
○​ RIP: Instruction Pointer (inaccessible)

No Operation

OpCode Name Format Description

0x00 NOP NOP PAD PAD PAD No Operation

Math

OpCode Name Format Description

0x10 ADD ADD RDest RAddend RAddend Adds the values of two registers and stores the
sum in a destination register

0x11 SUB SUB RDest RMinuend RSubtrahend Subtracts the values of two registers and stores
the difference in a destination register

0x12 MUL MUL RDest RFactor RFactor Multiplies the values of two registers and stores
the product in a destination register

0x13 DIV DIV RDest RDividend RDivisor Divides the values of two registers and stores
the quotient in a destination register

0x14 MOD MOD RDest RDividend RDivisor Divides the values of two registers and stores
the remainder in a destination register

Logic

OpCode Name Format Description

0x20 NOT NOT RDest RSource PAD Performs a bitwise NOT operation on the contents of
RSource and stores the result in RDest

0x21 AND AND RDest RLHS RRHS Performs a bitwise AND operation on the contents
of RLHS and RRHS registers and stores the result in RDest

0x22 OR OR RDest RLHS RRHS Performs a bitwise OR operation on the contents of
RLHS and RRHS registers and stores the result in RDest

0x23 XOR XOR RDest RLHS RRHS Performs a bitwise XOR operation on the contents of
RLHS and RRHS registers and stores the result in RDest

0x24 EQ EQ RDest RLHS RRHS Performs a bitwise equality check on the contents of
RLHS and RRHS registers, storing 0xFFFF in RDest if

equal and 0x0000 if not equal.

0x25 NEQ NEQ RDest RLHS RRHS Performs a bitwise inequality check on the contents
of RLHS and RRHS registers, storing 0x0000 in RDest if

equal and 0xFFFF if not equal.

0x26 GTE GTE RDest RLHS RRHS Performs a bitwise comparison on the contents of
RLHS and RRHS registers, storing 0xFFFF in RDest if​

RLHS ≥ RLHS and 0x0000 otherwise.

0x27 LTE LTE RDest RLHS RRHS Performs a bitwise comparison on the contents of
RLHS and RRHS registers, storing 0xFFFF in RDest if​

RLHS ≤ RLHS and 0x0000 otherwise.

0x28 GT GT RDest RLHS RRHS Performs a bitwise comparison on the contents of
RLHS and RRHS registers, storing 0xFFFF in RDest if​

RLHS > RLHS and 0x0000 otherwise.

0x29 LT LT RDest RLHS RRHS Performs a bitwise comparison on the contents of
RLHS and RRHS registers, storing 0xFFFF in RDest if​

RLHS < RLHS and 0x0000 otherwise.

Flow Control

OpCode Name Format Description

0x30 JMP JMP pad AddrHigh AddrLow
JMP #labelName

Jumps to a memory location denoted by
a 16-bit value (AddrHigh AddrLow). Labels

are supported in ASM, replacing the
address

0x31 JMPi JMPi pad RLocation pad Indirectly jumps to a memory location
denoted by a 16-bit value stored in

RLocation.

0x32 JMPT JMPT RCondition AddrHigh AddrLow
JMPT RCondition #labelName

Jumps to a memory location denoted by
a 16-bit value (AddrHigh AddrLow) if the

value of a given register is not 0. Labels
are supported in ASM, replacing the

address

0x33 JMPTi JMPTi RCondition RLocation pad Indirectly jumps to a memory location
denoted by a 16-bit value (AddrHigh

AddrLow) if the value of a given register is
not 0.

Memory

OpCode Name Format Description

0x40 SET SET RDest ValueHigh ValueLow Sets the contents of RDest to the literal value
represented by ValueHigh ValueLow

0x41 COPY COPY RDest RSource PAD Copies the contents of a RDest to RSource

0x42 LOAD LOAD RDest AddrHigh AddrLow Loads the value from memory at AddrHigh
AddrLow into RDest

0x43 LOADi LOADi RDest RSource PAD Loads the value from memory at AddrHigh
AddrLow into RDest

0x44 STR STR RSource AddrHigh AddrLow Stores the contents of RSource into memory
at AddrHigh AddrLow

0x45 STRi STRi RSource RDest PAD Stores the contents of RSource into the
memory location represented specified by

the contents of RDest

0x46 PUSH PUSH RSource PAD PAD Pushes the contents of RSource onto the stack

0x47 POP POP RDest PAD PAD Pops the value on top of the stack into RDest

Display

OpCode Name Format Description

0x50 CLR CLR PAD PAD PAD Clears the screen

0x51 DRAW DRAW XLocation YLocation Color Sets the color of a pixel at the specified​
X,Y coordinates to a given color​

(XTerm256 format).

0x52 DRAWi DRAWi RXLocation RYLocation RColor Sets the color of a pixel at the specified
X,Y coordinates to a given color

(XTerm256 format).

Compiler Notes

*Work In Progress

Components of a Compiler

●​ Syntax
1.​ Lexer / Tokenizer​ → Syntax Analysis & Lexemes
2.​ Parser​ ​ ​ → CST & AST

●​ ???
3.​ Semantic Analysis
4.​ IR Code Gen​ ​ → CIL
5.​ Optimizer​ ​ → CIL
6.​ Code Gen​ ​ → Target

Potential Oddities:

●​ Missing return statements in void functions are added in the codegen stage

Language Features
Has

​ Strong, Static Types
​ Reserved Keywords
​ Inheritance
​ Templates

​ Template Specialization
​ Template Metaprogramming???

​ Constexpr’s
​ Template Declaration
​ SFINAE
​ Type Traits

​ Limited Type Inference
​ var / new​ variables
​ var​ ​ return types?

​ Function Overloading?
​ Named Loops?
​ Nullable Context?
​ Aliasing?

Doesn’t Have:

●​ Structs
●​ Generics
●​ Operator overloading
●​ Multithreading
●​ Multiple inheritance

	ISA Documentation
	Computer Architecture Documentation
	Machine Specifications
	Registers
	Memory

	Instruction Set
	No Operation
	Math
	Logic
	Flow Control
	Memory
	Display

	Compiler Notes
	Components of a Compiler
	Language Features

