1. common

- **2.** log base 3 of 9
- **3.** They are inverse equations.
- **4.** Evaluate 4²; 16; 2
- 5. $3^2 = 9$
- **6.** $4^1 = 4$
- 7. $6^0 = 1$
- **8.** $7^3 = 343$
- **9.** $\left(\frac{1}{2}\right)^{-4} = 16$
- **10.** $3^{-1} = \frac{1}{3}$
- **11.** $\log_6 36 = 2$
- **12.** $\log_{12} 1 = 0$
- $13. \ \log_{16} \frac{1}{16} = -1$
- **14.** $\log_5 \frac{1}{25} = -2$
- **15.** $\log_{125} 25 = \frac{2}{3}$
- **16.** $\log_{49} 7 = \frac{1}{2}$
- **17.** 4
- **18.** 2
- **19.** 1
- **20.** 0

21. -4	21
---------------	----

25.
$$\log_7 8$$
, $\log_5 23$, $\log_6 38$, $\log_2 10$

26. There is no power of 2 that gives you −1, and all powers of 1 give you 1.

30.
$$-0.544$$

40.
$$x + 1$$

41.
$$-3$$
 and $\frac{1}{64}$ are in the wrong position; $\log_4 \frac{1}{64} = -3$

42. 16 should also be raised to the power of x;

$$\log_4 64^x = \log_4(16^x \cdot 4^x) = \log_4((4^2)^x \cdot 4^x) = \log_4(4^{2x} \cdot 4^x)$$
$$= \log_4(4^{2x+x}) = \log_4(4^{3x}) = 3x$$

43.
$$y = \log_{0.3} x$$

44.
$$y = \log_{11} x$$

45.
$$y = 2^x$$

46.
$$y = \left(\frac{1}{5}\right)^x$$

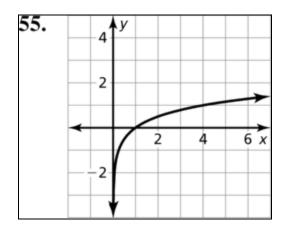
47.
$$y = e^x + 1$$

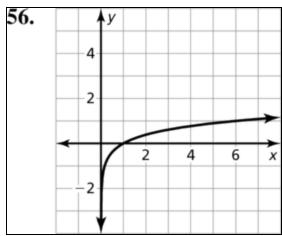
48.
$$y = \frac{1}{2}e^x$$

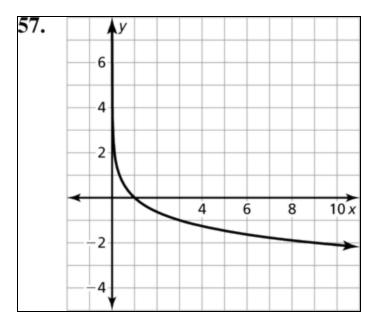
49.
$$y = \frac{1}{3} \ln x$$

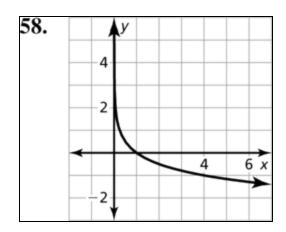
50.
$$y = \ln x + 4$$

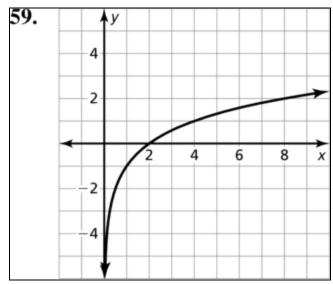
51.
$$y = \log_5(x + 9)$$

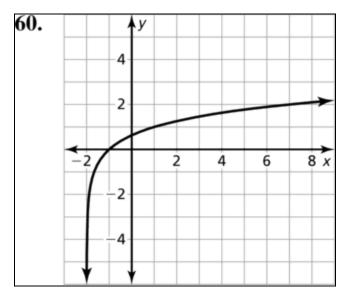

52.
$$y = 10^{x-13}$$

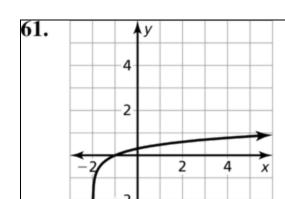

53. a. about 283 mi/h

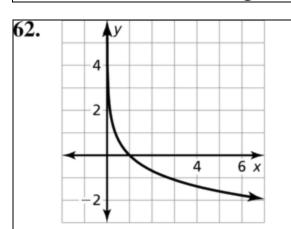

b. $d = 10^{(s - 65)/93}$; The inverse gives the distance a tornado will travel given the wind speed, s.

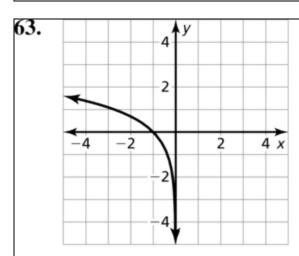

54. a. 9

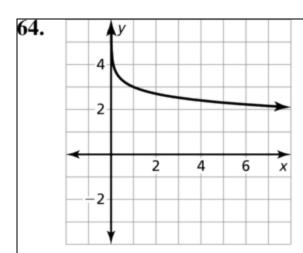

b. $E = 10^{3/2(M+9.9)}$; The inverse gives the amount of energy released from an earthquake of magnitude M.







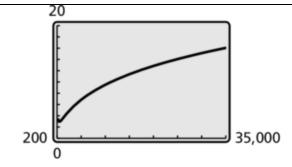



domain: x > -2, range: all real numbers, asymptote: x = -2

domain: x > 0, range: all real numbers, asymptote: x = 0

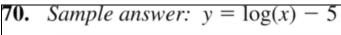
domain: x < 0, range: all real numbers, asymptote: x = 0

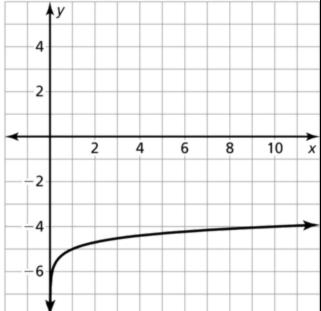
domain: x > 0, range: all real numbers, asymptote: x = 0


- **65.** no; Any logarithmic function of the form $g(x) = \log_b x$ will pass through (1, 0), but if the function has been translated or reflected in the *x*-axis, it may not pass through (1, 0).
- **66.** b, c, a, d
- 67. a. 180
 - **b.** about 281 lb
 - **c.** (3.4, 0); no; The *x*-intercept shows that an alligator with a weight of 3.4 pounds has no length. If an object has weight, it must have length.

68. a. As $x \to -\infty$, the exponential function approaches 0. The logarithmic function is not defined for $x \le 0$. As $x \to \infty$, the exponential function approaches ∞ and the logarithmic function approaches ∞ .

b. yes; They are symmetric in the line y = x.


c. The base of each function is 6; The logarithmic function passes through the point (6, 1). So, the equation for function g is $y = \log_6 b$. Graphing this function and $y = 6^x$ in your graphing calculator produces the same graphs as the ones shown.


69. a.

- b. 15 species
- **c.** about 3918 m²

d. The number of species of fish increases; Sample answer: This makes sense because in a smaller pool or lake, one species could dominate another more easily and feed on the weaker species until it became extinct.

71. a.
$$\frac{2}{3}$$
 b. $\frac{5}{3}$ c. $\frac{4}{3}$

c.
$$\frac{4}{3}$$

d.
$$\frac{7}{2}$$

72.
$$g(x) = -\sqrt[3]{x}$$

73.
$$g(x) = \sqrt[3]{\frac{1}{2}}x$$

74.
$$g(x) = \sqrt[3]{-x} + 3$$

75.
$$g(x) = \sqrt[3]{x+2}$$

- 76. constant; The graph is a translation 3 units down of the parent constant function.
- 77. quadratic; The graph is a translation 2 units left and 1 unit down of the parent quadratic function.

78. absolute value; The graph is a reflection in the *x*-axis followed by a translation 1 unit right and 2 units up of the parent absolute value function.