Incremental Dataload to Datamap and MV datamap
enhancement

Author: Ravindra Pesala
Version: 1.0
Date: 13/02/2019

Background

There are two types of datamap in Carbondata. 1. Index datamap and 2. OLAP datamap. Index
datamap is used to store additional indexes of data for better pruning. And OLAP datamap is
used to store aggregated data to give faster query performance on OLAP queries.

The current system cannot support incremental loading on OLAP datamaps. It means after
creating on OLAP datamap it needs to reload the whole datamap for any newly added
segments. This will slow down the loading.

It is expected to load only the new data to OLAP datamaps instead of loading whole data again.

Incremental Loading on Datamaps

On each data load, a new LoadMetaDataEntry will be added in TableStatus file. For MV
incremental data loading, each LoadMetaDataEntry of datamap TableStatus file, will maintain a
new entry, “Extralnfo: which holds the information about main tables and its list of segment id’s
loaded for corresponding new datamap load”.

New Entry in LoadMetadataEntry | Name of the datamap

Extralnfo Holds the information about main tables and its list of
segment id’s loaded for corresponding new datamap
load

Example:

[{"timestamp":"1556451136878","loadStatus":"Success","loadName":"0","partitionCount":"0","i
sDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEnd Timestamp":"","update
DeltaStartTimestamp":"","updateStatusFileName":"","loadStartTime":"1556451136264","visibilit
y":"true","fileFormat":"COLUMNAR_V3","segmentFile":"0_1556451136264.segment”,"extralnf
o":"{\"main_table\":[\"0\" \"1\"]}"}]

Extralnfo says, segment0 of datamap is made from segment 0 and 1 of its parent table.

Datamap with Single table synchronization

Main Table

[Segment 0] [Segment 1 } [Segment 2 } [Segment 3] [Segment 4 }

/

Datala :
Freat Onling Sync)4 C

DataMap Table /

[Segment 0] [Segment 1 J [Segment 3

Example for datamap with single table relation

Main Table

Create table main(id int, name string, dept string, age int, salary double) stored by
‘carbondata’

Datamap

Create datamap single_relation using ‘mv’ as select dept, sum(salary) from main

Olap datamaps created with single table relation will be synchronized with the main table in the
following way using the above picture.

Create datamap

Datamap is created on the main table and it already has 2 loaded segments 0 and 1. So during
datamap creation, it synchronizes both the segments with datamap table segment 0. This

synchronization happens at the time of create datamap only if it is non-lazy datamap. If it is lazy
datamap then synchronization happens only if the user explicitly calls rebuild.

After the load is successful to datamap table, Tablestatus file of datamap table will maintain
segment mapping with the following information

[{"timestamp":"1556451136878","loadStatus":"Success","loadName":"0","partitionCount":"0","i

sDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEnd Timestamp":"","update
DeltaStartTimestamp":"","updateStatusFileName":"","loadStartTime":"1556451136264","visibili
ty":"true","fileFormat":"COLUMNAR_V3","segmentFile":"0_1556451136264.segment”,"extraln
fo":"{\"main_table\":[\"0\" \"1\"]}"}]

The above information tells that the current datamap is synchronized till segment 1 with the
main table. And says that the datamap segment0 is made from main table’s segment 0 and 1.

Loading data to Main table

There is a new load happens on the main table called segment 2. After load finishes on the
main table datamap trigger load on the datamap. Now datamap reads the each loadMetadata
success entry from table status file for segment mapping and finds out that there is a
synchronization mismatch between the main and datamap table and starts loading of main table
segment 2 to the datamap table segment 1.

After the load is successful to datamap table it updates the tablestatus file with the following
information

[{"timestamp":"1556451136878","loadStatus":"Success","loadName™:"0","partitionCount":"0",
"isDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEnd Timestamp":"","updat
eDeltaStartTimestamp":"","updateStatusFileName":"","loadStartTime":"1556451136264","visibi
lity":"true","fileFormat":"COLUMNAR _V3","segmentFile":"0_1556451136264.segment”,"extral
nfo":"{\"main_table\":[\"0\",\"1\"]}"},{"timestamp":"1556451526077","loadStatus":"Success",
"loadName":"1","partitionCount":"0","isDeleted":"FALSE","dataSize":"637","indexSize":"419",
"updateDeltaEndTimestamp":"","updateDeltaStartTimestamp":"","updateStatusFileName":"","|
oadStartTime":"1556451525516","visibility":"true","fileFormat":"COLUMNAR_V3","segmentFile

":"1_1556451525516.segment”,"extralnfo™:"{\"main_table\":[\"2\"]}"}]

The above information tells that the current datamap is synchronized till segment 2 with the
main table and segemnt1 of datamap is made from segment2 of main table.

Loading fail on datamap table or lazy loading on datamap table

There is another load happens on main table and creates the segment 3. But during the
datamap synchronization with main table it got failed. So instead of failing the main table load
we can just disable the datamap so that queries never uses the disabled datamap for fetching

results.

After main table load success but datamap load fails for some reason then it updates the
datamapstatus file with the following information

datamap1 DISABLED

And the TableStatus file will be as below

[{"timestamp":"1556451136878","loadStatus":"Success","loadName™":"0","partitionCount":"0",
"isDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEndTimestamp":"","updat
eDeltaStartTimestamp™:"","updateStatusFileName":"","loadStartTime":"1556451136264","visibi
lity":"true","fileFormat":"COLUMNAR _V3","segmentFile":"0_1556451136264.segment”,"extral
nfo":"{\"main_table\":[\"0\" \"1\"]}"},{"timestamp":"1556451526077","loadStatus":"Success",
"loadName":"1","partitionCount":"0","isDeleted":"FALSE","dataSize":"637","indexSize":"419",
"updateDeltaEndTimestamp":"","updateDeltaStartTimestamp":"","updateStatusFileName":"","|
oadStartTime":"1556451525516","visibility":"true","fileFormat":"COLUMNAR_V3","segmentFile
":"1_1556451525516.segment","extralnfo":"{\"main_table\":[\"2\"]}"}]

The above information tells that the current datamap is synchronized only till segment 2 with the
main table and it is disabled.

During the next load on main table or user explicit call of rebuild datamap can trigger the
datamap load and then starts synchronizing both main table segment 3 and 4 will be loaded to
datamap table segment 3. Then datamap status will be as below

datamap1 ENABLED

And tableStatus file will be as below

[{"timestamp":"1556451136878","loadStatus":"Success","loadName™":"0","partitionCount":"0",
"isDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEndTimestamp":"","updat
eDeltaStartTimestamp™:"","updateStatusFileName":"","loadStartTime":"1556451136264","visibi
lity":"true","fileFormat":"COLUMNAR _V3","segmentFile":"0_1556451136264.segment”,"extral
nfo":"{\"main_table\":[\"0\" \"1\"]}"},{"timestamp":"1556451526077","loadStatus":"Success",
"loadName":"1","partitionCount":"0","isDeleted":"FALSE","dataSize":"637","indexSize":"419",
"updateDeltaEndTimestamp":"","updateDeltaStartTimestamp":"","updateStatusFileName":"","|
oadStartTime":"1556451525516","visibility":"true","fileFormat":"COLUMNAR_V3","segmentFile
""1_1556451525516.segment","extralnfo":"{\"main_table\":[\"2\"]}"}],
[{"timestamp":"1556451136858","loadStatus":"Success","loadName™":"2","partitionCount":"0",
"isDeleted":"FALSE","dataSize":"643","indexSize":"419","updateDeltaEndTimestamp":"","updat
eDeltaStartTimestamp":"","updateStatusFileName":"","loadStartTime":"1556451136269","visibi

lity":"true","fileFormat":"COLUMNAR _V3","segmentFile":"2_1556451136264.segment”,"extral
nfo":"{\"main_table\":[\"3\" \"4\"]}"}

The above information tells that the current datamap is synchronized only till segment 4 with the
main table and extralnfo says segment 2 of datamap table is made from segment 3 and 4 of
main table.

Note: Lazy datamaps will not be synchronized during the main table load, it only be
synchronized with explicit command rebuild datamap.

Datamap with Multi-table synchronization

Main Table 1 Main Table 1

(s o) (e] | (] () (s

N N NN 7

\ \ N
h kY A
Ay Ay Pt
b, *, ST

"""\. }‘\/f ""‘\.
D ‘gyl'a/ble \ \/

E=nle=n(c=n

It would be similar like the single table but it maintains the information of more tables. Here | will
not explain more about how datamapstatus and TableStatus is updated as more information is
already captured for single table datamap in the above section.

Here | will explain more about join cases how datamap table should be synched with the main
table. These are general star schema OLAP scenarios so | will explain with one example for
better understanding.

DataMap with inner Join
MV Datamap for the inner join query

Create datamap innerjoin using mv as Select p.product, p.amount, s.quantity from products p,
sales s where p.product=s.product

For the above datamap parent tables are products and sales tables.

Products

product Amount
Mobile 2000
Laptop 3000
Kettle 70
Washing 1000
machine

Sales

product Quantity
Mobile 1
Laptop 10
Chocolates 200
Biscuits 800

In the above case when we apply inner join on column product we only get the common items
between two tables. So During MV load the datamap will be loaded as follows.

MV DataMap after loading.

product Amount Quantity
Mobile 2000 1
Laptop 3000 10

Incremental Update of MV inner join DataMap
If new data is added to the parent tables For example as below

Products

product Amount
Mobile 2000
Laptop 3000
Kettle 70

Washing 1000
machine

Biscuits 10
Cheese 100

In the above products table, last 2 rows are newly added so we need to refresh the MV datamap
with new data. So only we just need to join the newly added segment data to the whole right
table Sales.

The new incremental DataMap output as follows.

product Amount Quantity
Mobile 2000 1

Laptop 3000 10
Biscuits 10 800

In the same way, if the sales table is updated with new data then only the delta data of the sales
table would be joined to the whole table of products.

DataMap with Left Outer Join
MV Datamap for the left outer join query

Create datamap leftouterjoin using mv as Select p.product, p.amount, s.quantity from products
p left join sales s on p.product=s.product

In the same tables which are mentioned above inner join section if we apply left join on column
product, we get the common items between two tables and along with non common data of
products table. So During MV load the datamap will be loaded as follows.

MV DataMap after loading.

product Amount Quantity
Mobile 2000 1

Laptop 3000 10
Kettle 70 null
Washing 1000 null

machine

Incremental Update of MV inner join DataMap
If new data is added to the parent tables For example as below

Products

product Amount
Mobile 2000
Laptop 3000
Kettle 70
Washing 1000
machine

Biscuits 10
Cheese 100

In the above products table, last 2 rows are newly added so we need to refresh the MV datamap
with new data. So only need to join the newly added segment data to the whole right table
Sales.

The new incremental DataMap output as follows.

product Amount Quantity
Mobile 2000 1

Laptop 3000 10
Kettle 70 null
Washing 1000 null
machine

Biscuits 10 800
Cheese 100 null

In the same way if the sales table is updated with new data

Sales

product Quantity
Mobile 1

Laptop 10
Chocolates 200

Biscuits 800
Kettle 4
Butter 80

In the above sales last 2 rows are added so we should refresh the datamap .

UPDATE table mvdatamap set (quantity) = (select quantity from sales<delta> join mvdatamap
where mvdatamap.product=sales.product) where quantity = null

product Amount Quantity
Mobile 2000 1

Laptop 3000 10
Kettle 70 4
Washing 1000 null
machine

Biscuits 10 800
Cheese 100 null

In the above MV Datamap Kettle value is updated with new value.

Improvement Steps:
1. Bucketing on join keys of parent tables and mvdatamap table as well. It will improve the
loading performance because of shuffling avoided.
2. New partition column can be added on mvdatamap and while loading we just provide the
value as isNull(some random right table column). So that all null values after loading will
be loaded to the null partition and query during update on the mvdatamap will be faster.

Compaction on Datamap

Compaction request on main tables will also request compaction on corresponfing datamaps.
It is better to have a seperate DDL for compacting datamaps to decouple from main tables. The
command could be as follows for manual compaction.

Alter datamap datamapname compact ‘minor’

Auto-compaction can also be enabled on datamaps just like how it is enabled for main tables.

Limitations

1. If there is any group by conditions on left outer join we cannot do delta loading to it, so
we should do a full refresh.

2. If the join column does not present in datamap table we cannot do delta loading to it, so
we should do a full refresh.

3. Alter operations are not supported.

Delete segments are not supported.

5. Partition on MV and Drop partitions are not supported.

e

	Incremental Dataload to Datamap and MV datamap enhancement
	Background
	Incremental Loading on Datamaps
	Datamap with Single table synchronization
	Create datamap
	Loading data to Main table
	Loading fail on datamap table or lazy loading on datamap table

	Datamap with Multi-table synchronization
	DataMap with inner Join
	Incremental Update of MV inner join DataMap

	DataMap with Left Outer Join
	Incremental Update of MV inner join DataMap

	Compaction on Datamap
	Limitations

