
Backend Interview Questions

Imagine we have a social media application. This application has very simple features:

● A user can sign up using a username, email and password.
● Each user has an account containing his username, email, full name, profile picture and

bio.
● Each user can follow and unfollow another user, and they can see people who they

follow or who follows them.
● Each user can like another user’s posts.
● Each user can post a photo which can be seen in his profile in chronological order.

We are using a SQL database to store information. The database diagram is shown below (For
simplicity, authentication information is omitted).

Note: You don’t have to adhere to any language or syntax, just make sure that the execution
steps are logically correct. We value that all requirement criteria are satisfied. We don’t expect
you to create a project from scratch, you only need just provide the code for the function asked
in the questions.



Q1 - Day-to-day programming (approx. 15 minutes)
We are implementing a simple function to get information for a list of posts that might be used in
arbitrary places for our project. (Think of this like a random post feed on Instagram.) Write a
simple function (signature is given below) to get all information for given post ids.

Data structures that should be returned from the function
struct User:

id: int
username: string
full_name: string
profile_picture: string
followed: boolean // whether or not requesting user follows

struct Post:
id: int
description: string
owner: User
image: string
created_at: int
liked: boolean // whether or not requesting user likes

Signature
def get_posts(user_id: int, post_ids: List[int]) -> List[Post]: // implement

Input parameters

user_id The requesting user id. Use this to determine liked field of struct Post and
followed field of struct User

post_ids List of post ids that are requested

Requirements / Assumptions
● Assume given post_ids are unique.

● The function should return a list of struct Post in the same order as post_ids.

● The function should place null values for non-existing posts in the resulting list.

● You can only read from a single table in each query (no joins or subqueries are allowed).

● You need to specify the SQL queries explicitly.

● You can use this kind of format for executing SQL queries:

db_posts = SELECT * FROM post WHERE id IN post_ids



Q2 - Algorithmic design (approx. 30 minutes)
Write a merge_posts function (signature is given below) which takes in one parameter
list_of_posts which is a list of post lists (List[List[Post]]), and returns a list of posts (List[Post]).
The function should merge each list in list_of_posts to a single list.

struct Post:
id: int
description: string
image: string
created_at: int

def merge_posts(list_of_posts: List[List[Post]]) -> List[Post]: // implement

Requirements / Assumptions
● You're guaranteed that each element of list_of_posts is sorted by created_at attribute in

ascending order. The posts with the same created_at value in each element of
list_of_posts are sorted by their id in ascending order.

● The output of merge_posts should be sorted by created_at attribute in descending order.
● For posts that have the same created_at value, they should be ordered by their id in

descending order.
● The result should contain unique posts i.e id attributes of the result list should be unique

(you can assume that if two post has same id, all of their attributes are the same)
● Lists are dynamic-sized arrays so you have index-based access in O(1) time.
● The time complexity of the function should be at worst O(M*N) where M is the size

of list_of_posts and N is the sum of size of elements in list_of_posts. (a time
complexity of O(N*logN) won’t be accepted)


