Preview 0.32- DOTS Runtime & Project
Tiny: Getting Started

Table of contents

Document Change log

What Is Project Tiny and DOTS Runtime?

System Requirements

For Development

For Runtime

About Linux support
Filing Bugs and Providing Feedback
Getting started: use Sample Projects
Feature Status Summary

Anatomy of a Tiny Project
Scenes and Subscenes
GameObject and Behavior Authoring
The “Root Assembly”
DOTS .NET Subset
Build Configurations
Authoring and Editor-only Code
Runtimes and Packages

Setting up a New Project
Project and Package Setup
Code Setup
Scene Setup
Build Setup

Running and Debugging
Build Configurations
DOTS C# Solution
.NET vs il2cpp Builds
Debugging with a DOTS Runtime/Project Tiny build
Debugging conversion systems:
Using Debug.Log()
Web Build & Run

N NO0O o oo b

o]

I I U G G G §
W W NN - - O O o

G N U G
() BN NN SN S N

N NN 2 a2 -
N N =~ © 00 o OO0 &

Profiling
Play-in-Editor

GameObject/DOTS Features and properties mapping

Camera

Mesh Renderer

Material

Light
Supported built-in functionalities:
Additional functionalities
Ambient Light

Texture Compression Settings

Texture Importer Settings:

Text Rendering
Creating a compatible font asset
Displaying text in a scene
Creating text in the editor
Creating text dynamically at runtime
Changing text at runtime

3D FOG

2D
GameObject conversions
Sprite
Sprite Renderer
2D Entities Physics

Particle System (3D)
Overview
Creating Particle Systems in the Editor
Creating Particle Systems from Script
Supported Features
Varying Properties Over Time
Main Module
Emission Module
Shape Module
Renderer Module

Summary of the Modules and properties supported at the moment:

Shaders
Shader Conversion

23
24

24
24
25
26
27
27
28
28
29
29
30
30
31
32
32
32
33

33
34
34
34
36

36
36
37
37
37
38
38
39
39
41
43

44
45

Supported Features

Uniforms
Supported Types
Unity Built-in Uniforms
Uniform Buffers
Samplers

Vertex Attributes

Include Files
Unity Built-in Include Files

ShaderLab

Variants

ShaderGraph

Platform Specific features

Game save system
Suspend, Resume & Quit Events (i0OS, Android)
Accelerometer/Gyro (iOS & Android)
Multi-touch (iOS & Android)
Native Plugins (iOS & Android)
Android
i0S
Single HTML File Output (Web)
Interacting with browser scripting (Javascript/C# interoperability)
JavaScript plugins
Calling JavaScript functions from C# scripts
Working with arrays
Calling C# callbacks from JavaScript
Adding raw JavaScript code to the build
Using web templates
Web template structure
Creating a custom web template

Screen orientation

Screen & Device Orientation APls
Screen Orientations build component

Audio

Audio Authoring

Audio Assets

Scripting with Audio Components
Audio Tips

45
45
45
45
46
46
46
47
47
47
47
47

47
47
50
52
54
56
56
57
57
58
58
58
61
64
67
69
69
70

71
71
75

75
75
76
76
78

JSON
Reading JSON
Writing JSON
High Performance JSON Writing

Tiny.Ul
General Support:
Supported Ul
Getting Events and Ul Elements
Supported Features / Properties - Inspector view
Ul Code snippets

Skinned Mesh Renderer and BlendShape
Overview
Getting Started
The Runtime API
Conversion Support

Frequently Asked Questions
At runtime, | get an error about “Cannot find Typelndex for type hash”
Is there a precise roadmap or launch date for Project Tiny?
My code changes are not appearing in my game when building from Rider!

Known Issues

Document Change log

e Jan 25, 2021 - 0.32 preview
Nov 2, 2020 - Project Tiny 0.31 is available

Oct 26, 2020 - New demo "Skelebuddies Halloween Run", upcoming preview and
roadmap update

Aug 26, 2020 - Project Tiny 0.29 is available

July 27, 2020 - Project Tiny 0.28 is available
July 8, 2020 - Project Tiny 0.27 was skipped

May 27, 2020 - Project Tiny 0.26 is available
May 1, 2020 - Project Tiny 0.25 is available

April 15, 2020 - Project Tiny 0.24 is available
March 24, 2020 - Project Tiny 0.23 is available

March 6, 2020 - 2D Foundational Features for Project Tiny 0.22

fixes.

79
79
80
81

82
82
83
83
84
87

87
88
89
89
90

92
92
93
93

94

Sept 16, 2020 - added “Multi / Single Threaded options” in Build Configurations section

Feb 25, 2020 - Project Tiny 0.22 - Added new package to include all dependencies, bug

https://forum.unity.com/threads/project-tiny-0-31-preview-is-available.998752/
https://forum.unity.com/threads/new-demo-skelebuddies-halloween-run-upcoming-preview-and-roadmap-update.994987/
https://forum.unity.com/threads/new-demo-skelebuddies-halloween-run-upcoming-preview-and-roadmap-update.994987/
https://forum.unity.com/threads/project-tiny-0-29-preview-is-available.954972/
https://forum.unity.com/threads/project-tiny-0-28-preview-is-available.939876/
https://forum.unity.com/threads/new-sample-tutorial-and-update-about-project-tiny-0-27-preview.927819/
https://forum.unity.com/threads/project-tiny-0-26-preview-is-available.899402/
https://forum.unity.com/threads/project-tiny-0-25-preview-is-available.881065/
https://forum.unity.com/threads/project-tiny-0-24-preview-is-available.868249/
https://forum.unity.com/threads/project-tiny-0-23-preview-is-available.853258/
https://forum.unity.com/threads/first-batch-of-2d-features-for-project-tiny-0-22-is-now-available.830652/
https://forum.unity.com/threads/project-tiny-0-22-available-bug-fixes-and-simpler-setup.835387/

e Jan 31, 2020 - “Project Tiny” 0.21- Added support for Unity.Physics.com, bug fixes.
e |nitial version Dec 12, 2019 - Project Tiny Fall update “Tiny Racing” 0.20 is available

What Is Project Tiny and DOTS Runtime?

Unity embarked on Project Tiny to deliver a highly-modular runtime giving developers the tools
needed to produce small, light, and fast games/experiences like Mobile, Playable Ads and
Instant social experiences.

Over the lifetime of the project (see Unite Copenhagen 2019 Project Tiny roadmap session
recording), the goals have not changed but our path to achieving them has. Rather than a
separate Editor mode of its own, Project Tiny aligned closer with DOTS and now shares the
regular DOTS conversion authoring workflow. This workflow allows you to work with Unity
GameObjects as usual, with all their rich authoring capabilities, while converting into optimal
ECS-based data at runtime. (For more information about this authoring flow, see Converting
Scene Data to DOTS).

Compared to “regular” Unity content, Project Tiny content targets the new DOTS Runtime and
has no dependency on the existing UnityEngine. The DOTS Runtime is a new execution
environment focused on DOTS code, with a very lightweight small core runtime that can be
extended by modules providing additional features. Our goal is to ensure that you pay code size
and execution cost only for the features that you actually use. All functionality is provided as
pure DOTS modules, delivered as assemblies, distributed via packages, and is interacted with
using DOTS and ECS methods.

Project Tiny is part of a spectrum of “regular” Unity and pure DOTS capabilities. Our goal is to
ensure that if a project is compatible with the DOTS Runtime, it also works in DOTS Hybrid /
Unity. (We’re not there yet.)

System Requirements
The following system requirements will vary and should not be considered as final.

For Development

e Unity 2020.1.10f1 or later is required.
e Windows 10:
o Rider or Visual Studio 2019 with the following components installed:
m Desktop development with C++
m .NET desktop development
m Windows 10 SDK
o Note: If using Rider, ensure you have disabled the Resharper Build feature as it
is not compatible with Tiny’s build process.
e MacOS:
o XCode 10.0 or later
o Make sure xcode-select -p returns /Applications/Xcode.app/Contents/Developer if
not please run sudo xcode-select -r to reset the default Xcode path.

e iOS:

https://forum.unity.com/threads/project-tiny-0-21-is-available-includes-physics-and-fixes.819945/
https://forum.unity.com/threads/project-tiny-fall-update-tiny-racing-preview-2-020-1-is-available.792999/
https://www.youtube.com/watch?v=kNK_niBNkMY&feature=youtu.be
https://www.youtube.com/watch?v=kNK_niBNkMY&feature=youtu.be
https://unity.com/dots
https://www.youtube.com/watch?v=TdlhTrq1oYk
https://www.youtube.com/watch?v=TdlhTrq1oYk

o XCode 10.0
o Unity iOS Build Support module.
e Android:

o Unity Android Build support module installed via the Unity Hub which will install
the required Android SDK, NDK, and OpenJdDK ((see installation instructions for
details)

e Web
o Unity WebGL Build Support module is No longer required for Web Build & Run

For Runtime

(note that the following minimum system requirements will evolve and are not final)
e Mobile

o Native builds:
m iOS 10+
m Android 4.4+

o Browser/Webviews builds:
m asm.js /WebGL: iOS 10+, Android 4.4+
m WebAssembly /WebGL: iOS 11+, Android Chrome 71 (Android 4.4.3+)

o Notes:

m ForiOS, Apple requires that all applications use WKWebView for web
content, which is Safari/WebKit based. So other iOS browsers are built on
top of Safari, and therefore have the same level of support. The particular
version of Safari is tightly coupled to iOS version, so we don't differentiate
in our requirements.

m For Android, we are currently testing on Chrome browser and System
WebView, though we may consider adding other browsers to our support
matrix in the future.

e Desktop (Windows/Mac OS)
o Native builds:
m Windows 10+
m macOS Sierra 10.12+
o Web browser builds:
m Firefox 58+
m Chrome 52+

About Linux support

Currently, Linux support is Experimental. There are no guarantees on building DOTS Runtime
applications targeting a specific flavor of Linux on any given platform. Making DOTS Runtime
Linux builds requires running the Unity Editor on Linux.

With that said, some common issues have come up in experimental usage within Ubuntu 20.04
AMDG64 which have known solutions:

sudo apt-get install liblz4-dev Resolves dependency on liblz4 in
conversion pipeline

https://docs.unity3d.com/Manual/android-sdksetup.html
https://play.google.com/store/apps/details?id=com.google.android.webview
https://play.google.com/store/apps/details?id=com.google.android.webview

sudo apt-get install ca-certificates-mono

Fixes a potential issue downloading
dependencies during the build
process

wget
http://security.ubuntu.com/ubuntu/pool/mai
n/o/openssl1.0/1ibss11.0.0_1.0.2n-1ubuntu5
.5_amd64.deb

sudo dpkg -i
libss11.0.0_1.0.2n-1ubuntu5.5_amd64.deb

Resolves dependency on libssl1.0.0
in the build process

sudo apt-get install xorg-dev

Resolves various X11 dependencies

sudo apt-get install libudev-dev

Resolves device API dependencies

sudo apt-get install mono-devel

Fixes multiple issues reported as
“missing netstandard 2.0.0”

Though these aren’t as commonly reported, below are a handful of additional solutions if the

issue occurs:

sudo apt-get install libtinfo5

Resolves dependency of
libncurses-dev used in some versions
of clang

wget
http://mirrors.kernel.org/ubuntu/pool/main
/1ibf/libffi/libffi6 3.2.1-8 amd64.deb

sudo dpkg -i libffi6_3.2.1-8 amd64.deb

Resolves another dependency in
some versions of clang

Filing Bugs and Providing Feedback

To file bugs, please use the Unity Bug Reporter in the Unity Editor, accessible via Help > Report
a Bug. Please include “Project Tiny” in the title to help our staff triage things appropriately! For
more details on how to report a bug, please visit this page.

For general feedback, please visit the Project Tiny Form.

Getting started: use Sample Projects

Sample projects are the easiest way to get all components required for Project Tiny. Just go to
https://github.com/Unity-Technologies/ProjectTinySamples, clone/download everything, and

then open the sample project in one of the folders.
You'll find the following projects:

http://mirrors.kernel.org/ubuntu/pool/main/libf/libffi/libffi6_3.2.1-8_amd64.deb
http://mirrors.kernel.org/ubuntu/pool/main/libf/libffi/libffi6_3.2.1-8_amd64.deb
https://unity3d.com/unity/qa/bug-reporting
https://forum.unity.com/forums/project-tiny.151/
https://github.com/Unity-Technologies/ProjectTinySamples

Tiny3D: A "Hello World" style sample with minimal assets & code. It's a great starting
point for a new "clean" project.

TinyRacing: Intended as a lightweight example of the type of content you can build with
Project Tiny. It is a complete game slice showing a number of elements such as
accepting input, implementing simple Al, handling collisions, and similar. Please explore
and play around with the sample project to get a feel for what developing with pure
DOTS looks like.

TinyPhysics: Alllustrates how to combine simple Unity Physics behaviors and common
input methods (keyboard, touch, mouse).

TinyFactory: Demonstrates how Animations can be added to a scene (no code).
TinyAquarium: Demonstrates Particle System the first iteration of the particle system
which mirrors a subset of the functionalities available with the built-in Particle System
(aka shuriken).

RuntimeGeometry3D: Demonstrates how to do Dynamic meshes creation at runtime.
2D Entities Starter: a template project, which has everything setup for you to get started
with the 2D Entities package.

TinyGems and TinySpaceship: 2D sample projects that showcase some of the features
that can be found inside the 2D Entities package.

A number of areas in these samples are currently implemented in a way that is not final due to
missing features, such as Ul. We'll improve the sample projects as a richer feature set becomes

available.

Within the project folder, there is a “Build” folder that contains predefined build configurations for
a variety of platforms. For example, if you are on Windows, you should be able to click on the
“Windows-DotNet” asset and select “Build and Run” in the inspector window to build and run the

sample for Windows.

Feature Status Summary

Feature Status Summary as of the current preview version

Platform Support

Desktop platforms, the Web (both asmjs and WebAssembly),
Android, and iOS are available.
Single HTML file export (for playable ads scenario) is now available.

Mobile Specific

Screen orientation control, suspend/resume support added.

features Advanced build settings support.
Jobs The Jobs APl is fully supported.
Burst Burst is now available for Windows (DotNet/IL2CPP), MacOS

(DotNet/IL2CPP), and iOS/Android (IL2CPP) with Debug,
Development & Release builds. Other platforms/options coming in
future releases.

3D Graphics

A lightweight 3D renderer is available in Unity.Tiny.Rendering
including PBR, dynamic mesh. The capabilities of this renderer will
be expanded in the future.

3D Particles

Initial support for particles added to preview 0.24 for (3D only for n
now) as a subset of Unity built-in particle system (aka shuriken)

2D Graphics &
2D Physics

Support for 2D foundational features available

Input

Lightweight input is available via the Unity.Tiny.Input assembily,
Touch input as a priority with Multi-Touch added in 0.25. Touch is
supported only for Mobile (iOS/Android) & Mobile/Web, not on
desktop (Windows/Mac).

Accelerometer/Gyro support is available for Android and iOS.

Audio

Lightweight audio is available via the Unity.Tiny.Audio assembly. 3D
audio, pitch control also available

Animation

Rudimentary support for animation workflows using the
TinyAnimationAuthoring component. It allows users to author
animation that works in Tiny from the Animation window. See
TinyFactory sample. Currently supports transform-based animation
+ any float field in user code can be animated, as long as it can be
bound to in its MonoBehaviour counterpart. See assemblies:
Unity.Tiny.Animation and its siblings.

3D Physics

Unity.Physics is available to use with Project Tiny. See TinyRacing
and TinyPhysics samples
(https://github.com/Unity-Technologies/ProjectTinySamples/).

Interop

Using native plugins is supported, see Native Plugins section. For
C# / Javascript Interop see Calling Javascript functions section.

Ul

Lightweight Ul solution partially available - see Tiny Ul section

Text Rendering

A lightweight solution to render text for both Ul and for in-game text
will be coming this year.

Networking

Support for HTTP client planned.

Custom Shaders

Initial implementation started with preview 0.31. See Shaders
section for details.

https://github.com/Unity-Technologies/ProjectTinySamples
https://github.com/Unity-Technologies/ProjectTinySamples
https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinyPhysics

Skinned Mesh Simple GPU/CPU skinned mesh is available. See Skinned Mesh
Renderer Renderer and BlendShape section

Anatomy of a Tiny Project

A Unity project that’s compatible with the DOTS Runtime is very similar to a normal Unity project
with the following differences:
1. Scenes must be composed entirely of DOTS Subscenes containing convertible
components, or use Convert to Entity components on GameObjects in a top-level scene.
(You can use unconverted GameObjects as authoring aides, but these are not preserved
in play mode or the built application.)
2. Run-time code must be compiled into an assembly using an Assembly Definition.
3. Your code can only use DOTS APIs. No UnityEngine APIs are supported (with a very
few exceptions for some source code compatibility, like logging).
4. Building (and Running) must be done using a Build Configuration asset, with a DOTS
Runtime build profile.
These requirements are discussed in more detail below. We'll use the TinyRacing project as an
example where you can see all of these requirements in action.

Scenes and Subscenes

Because DOTS Runtime is pure DOTS, scenes must be convertible to their DOTS Entity and
Component representation. There are no GameObjects or MonoBehaviours in the DOTS
Runtime world. Anything that is not convertible will not exist at runtime.

For more details, the Converting Scene Data to DOTS talk from 2019 Unite Copenhagen gives
general information.

This area is under heavy development. The setup described below will be simplified in future
releases. Additionally, much better guidance will be given in the Editor as to what can and can’t
be converted.

Using Sub-Scenes to enable conversion is no longer required. Conversion from GameObiject to
Entities is now enabled at scene Root. Using subscenes to organize content is still possible.

In TinyRacing, the scene in “Scenes/TinyRacing.scene” contains a single subscene (the “DOTS
Subscene” scene).

GameObject and Behavior Authoring

With the GameObject conversion authoring workflow, DOTS runtime data is created from
GameObjects and MonoBehaviours. A portion of the standard behaviors and assets have
conversion code defined -- for example, MeshRenderers, MeshFilters, Material and Texture
assets. However, your game logic needs to be defined entirely using ECS components and
executed using ECS systems.

A detailed list of supported behaviors is coming soon. Additionally, we’re working on extending
the Editor to provide guidance in the Ul around what’s supported and how it will be converted.

https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://www.youtube.com/watch?v=TdlhTrq1oYk

The “Root Assembly”

DOTS Runtime, and with it Project Tiny, only supports pure DOTS code. All functionality
provided has been designed with DOTS in mind and takes full advantage of DOTS, C# Jobs,
and Burst. In order to enforce the separation of pure DOTS code from code that references
UnityEngine types or only works in the Unity Editor, your game scripts must be compiled into
one or more assemblies defined using Assembly Definition assets. You must designate one
Assembly Definition as the Root Assembly in your Build Configuration asset.

The root assembly must reference any assemblies containing the classes and types your code
uses. For example, it must reference Unity.Entities for core DOTS functionality, but also may
reference Unity.Tiny.Input and Unity.Tiny.Rendering to gain access to the input and rendering
functionality provided by Project Tiny. If you create additional assemblies for your project, they
also must be referenced by the root assembly, either directly or through other referenced
assemblies. Any scripts that are not part of an assembly are not included in your app.

See Assembly Definition properties for information about setting references and other assembly
properties.

In TinyRacing, the root assembly is defined by the TinyRacing.asmdef asset in the
“Scripts/TinyRacing” folder.

DOTS .NET Subset

All code written for DOTS Runtime is built against a subset of the .NET framework optimized for
code size and performance and organized in what we call Base Class Library. Much of
standard .NET is NOT available. We’ve created a list of what’s included in the Project Tiny Base
Class L|brary

ThIS area is under heavy development and what is and is not available in this proflle is
not finalized.

Our goal is to provide chunks of opt-in functionality to provide maximum flexibility in what is and
isn’t used by your projects. Thus, just because your code builds using the Unity C# Project,
does not guarantee that it will build using the DOTS Runtime build system (which will use its
own DOTS C# Solution).

Instead, you need to generate a separate DOTS C# Project, which targets the limited .NET
subset. See below for more information about this project.

Notable limitations of the DOTS .NET subset include:

- No runtime reflection (System.Reflection and friends)
No heavyweight functionality (e.g. System.Xml)
No non-generic collections (List<T> is available, List is not)
Many of the more complex generic collections are missing

- While this will be fixed, more efficient collections are already available as part of

Unity.Collections: NativeList, NativeSet, NativeHashMap, NativeMultiHashMap

No generic ToString and Equals functionality (each type must explicitly define their own
version of these functions when needed)

https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/class-AssemblyDefinitionImporter.html
https://docs.unity3d.com/Packages/com.unity.tiny.all@latest?subfolder=/manual/tinybcl.html?_ga=2.36207011.209095972.1591986371-276835742.1534452453

Build Configurations
You build DOTS Runtime and Project Tiny apps with the new Build Configuration
mechanism instead of the usual Unity Build Settings window.

The new Build Configurations are assets that live in your project that define a build: the
individual settings and the steps (Build Pipeline) used to execute those steps. It lets you easily
define multiple build configurations and store them with your project, as well as extend with your
own build data and build steps. Build Configurations can inherit their settings from another Build
Configuration asset.

O Inspector % Project Settings @ Inspector S
Android-Aquarium Build and Run v

& Android-Aquarium (BuildConfiguration)

Dependencies 1
Element 0 & CommonAquarium (BuildConfiguration) ® X

+ Add Element

TinyAquarium
Unity

v

Dots Runtime Build Profile
Target Android
Configuration Develop

Build Configurations are used to create DOTS Runtime/Project Tiny builds, based on the Build
Profile component present in the Build Configuration asset. Build Configurations can be
inspected to view their data, as well as trigger builds.

Tip: you can add inspectors, lock them to your favorite Build Configurations and dock them in a
corner of the editor:

© Inspector © Inspector
Windows-DotNet Build and Run

&) Windows-DotNet (BuildConfiguration)

O Inspector O Inspector
Wasm Build and Run

& Wasm (BuildConfiguration)

This area is under heavy development. While the Build Configuration functionality is very
powerful, its design is still a preview. It may change significantly in the future, but the core
functionality will remain the same. The Ul and overall user experience will also be significantly
improved.

In TinyRacing, various Build Configuration assets are defined in the “BuildConfigurations” folder.

Authoring and Editor-only Code

The DOTS GameObject authoring workflow requires that authoring happens using
GameObjects and MonoBehaviours. These are converted to an ECS representation using
conversion systems. For your own components, there are three ways to define the authoring
MonoBehaviour and runtime components. In increasing order of complexity (and power):

e GenerateAuthoringComponent attribute. Any IComponentData can have a
[GenerateAuthoringComponent] attribute placed on it. This will automatically generate a
MonoBehaviour that can be used for authoring with the same fields as those present in
the component.

e A MonoBehaviour that implements IConvertGameObjectToEntity. This interface defines
a Convert method that will be called on the MonoBehaviour and must create any ECS
components it needs using the provided EntityManager and Entity.

e A GameObjectConversionSystem. This is the lowest level and most powerful
mechanism. These systems execute at conversion time and have a full view of both the
original Unity Scene data as well as the destination ECS EntityManager data.

For all of these approaches, the IComponentData to be used at runtime must be defined in an
assembly that’s built as part of the DOTS Runtime build: either the Root Assembly or one
referenced by it.

For IConvertGameObjectToEntity and GameObjectConversionSystem, the MonoBehaviour or
conversion system code must be in a separate assembly that is not referenced by the Root
Assembly. (Compilation errors at build time will result if this isn’t true.) Unity recommends that
you add a “.Authoring” suffix in the name of these assemblies.

In the TinyRacing project, you can see a mix of GenerateAuthoringComponent used directly in
the TinyRacing assembly, as well as a separate TinyRacing.Authoring assembly that defines
some more complex conversion code. It uses a custom GameObjectConversionSystem to
handle some hand-baked Ul and textures for displaying numbers at runtime.

Runtimes and Packages
When talking about DOTS, it's important to understand that Unity has two runtimes:
e ‘“classic” Unity is using the UnityEngine Player Runtime, and enable "Hybrid" mode with
DOTS components powering part of your projects like the Megacity project,
e “new” DOTS Runtime which currently only Project Tiny is using, like the Tiny demos
based on DOTS runtime.

The new DOTS Runtime is built by assembling the required packages to ultimately form a
complete product. The first product built on the DOTS Runtime is Project Tiny which is made of
multiple packages grouped under com.unity.tiny.all.

Then additional optional features are available also as packages. For example
com.unity.physics which works with DOTS runtime but also with the “classic” UnityEngine Player
Runtime

In the future, most new features in Unity will be built as packages supporting both runtimes.

We understand that it is a bit confusing with all these packages. We are currently working on
ways to improve this, and make it easier to get a better overview.

https://unity.com/megacity
https://github.com/Unity-Technologies/ProjectTinySamples
https://docs.unity3d.com/Packages/com.unity.tiny.all@latest
https://docs.unity3d.com/Packages/com.unity.physics@0.3/manual/index.html

Setting up a New Project

New project setup will be greatly simplified in the near future via a Project Tiny template.
For now sample projects like TinyRacing/Tiny3D/TinyFactory (available here
https://qithub.com/Unity-Technologies/ProjectTinySamples) are the easiest and recommended
way to get all components required for Project Tiny.

If you really want to set up a project on your own, follow the steps below.
If you want to work with 2D features (com.unity.2d.entities), check the 2D Projects section.
For manual setup of a new 3D project, follow these steps:

Project and Package Setup
1. Start with a Universal Render Pipeline project template.
The Project Tiny renderer will be designed to match a subset of baseline URP rendering.
(Note: still very much a work in progress.)
2. Add the main Project Tiny Full package (com.unity.tiny.all) which includes references to
all packages and all features for targeting the Web, Android, iOS and the desktop
platforms.

Code Setup

1. Create a new folder inside Assets named “GameSystems”
2. Inside GameSystems, create a new Assembly Definition asset
a. Right-click Create and select Create > Assembly Definition
b. Name it “GameSystems”
c. Inside the inspector, add the following assemblies as references:
i. Unity.Entities
ii. Unity.Collections
ii. Unity.Transforms
iv. Unity.Mathematics
v. Unity.Tiny.Core
vi. Unity.Tiny.Rendering
For example in TinyPhysics sample the list of referenced assemblies looks like
this:

https://github.com/Unity-Technologies/ProjectTinySamples
https://docs.unity3d.com/Packages/com.unity.tiny.all@latest

Assembly Definition References

Use GUIDs

Unity.Jobs

Unity.Burst

Unity.Entities
Unity.Collections
Unity.Mathematics
Unity.Mathematics.Extensions
Unity.Transforms
Unity.Physics
Unity.Tiny.Core
Unity.Tiny.Input
Unity.Tiny.Rendering
Unity.Tiny.RendererExtras
Unity.Tiny.Rendering.Native

B Unity.Jobs

B Unity.Burst

B Unity Entities

B Unity.Collections

B Unity.Mathematics

B Unity.Mathematics.Extensions
B Unity.Transforms

B Unity.Physics

B Unity.Tiny.Core

B Unity.Tiny.Input

B Unity.Tiny.Rendering

B Unity.Tiny.RendererExtras
B Unity.Tiny.Rendering.Native

©
O]
O]
O]
©
O]
O]
O]
O]
O]
O]
O]
O]

3. Inside GameSystems, create two C# Script files named:
a. RotateComponent
b. RotateSystem
4. Edit RotateComponent.cs and replace the contents with the following. This defines a

new ECS component and makes it available for use in the Editor.
using Unity.Entities;
[GenerateAuthoringComponent]

public struct RotateComponent IComponentData
{

public float Speed;
}

5. Edit RotateSystem.cs and replace the contents with the following. This defines a new

ECS system that uses the above component to change an entity’s rotation.
using Unity.Entities;

using Unity.Transforms;

using Unity.Mathematics;

public class RotateSystem : SystemBase
{
protected override void OnUpdate()
{
var dt = Time.DeltaTime;
Entities.ForEach((ref Rotation rot, ref RotateComponent rc) => {
rot.Value = math.mul(rot.Value, quaternion.RotateY(dt * rc.Speed));
}) .ScheduleParallel();
}
}

Scene Setup
1. Create a new scene called Main.unity
2. Remove the audio listener component from the camera
3. Create a cube
a. Right click Create > 3D Object > Cube
b. Move the cube forward (in Z) a bit and scale it up so that it’s visible in the camera
4. Remove the Box collider component from the cube
5. Add a component to the cube -- search for “Rotate Component”
a. This is the component we declared earlier in code setup

6. Setthe speedto 0.2
Build Setup

7. Create a new Build Configuration asset via right clicking in the Project window, and then
Create > Build > DOTS Runtime Build Configuration

8. Drag or select your Root Assembly assembly definition into the Root Assembly field.

a. This is the “GameSystems” assembly created above

9. Add a Scene List build configuration component, if one isn’t present.

a. To add a component, press the + button in the bottom of the inspector.

10. Add your Main.unity scene to the scene list.

a. Inthe Scene List section, set the Size to 1 (or the number of scenes you want to
include in the build).
i. Yes, this way of interacting with arrays is clunky. It'll be fixed soon.
b. Drag the Main.unity scene asset to the array slot below the Size field.
11. Select your build target and build type.
a. For example, “Windows .NET” and “Develop”

12. Press Build and Run in the upper right.

13. For WASM and AsmJS builds, make sure to add the “Emscripten Settings” component to
the build configuration and add to the EmccArgs list an entry with the string “-s
TOTAL_MEMORY=128MB”, or however much maximum memory your application is
allowed to use. The recommended minimum is 128MB.

Running and Debugging

Build Configurations

Build Configurations are the main entry point for building and running your project. For example,
in the TinyRacing project, inspecting the “Build/Windows-DotNet” (or Mac, etc.) build
configuration will show a “Build” or “Build and Run” button in the upper right. Pressing Build will
build and place the result (by default) in a Builds folder at the top level of your project. Build and
Run will build and (if possible on the target platform) run the resulting build.

On the Web, you will have to manually spin up a web server to launch your build. (The
“http-server” npm package can help here.) Playing directly from a file:// URL is not supported
due to web browser security constraints.

Rendering specific build settings can be added via the "Dots Runtime Scripting Defines"
components. Currently supported defines are:

RENDERING_FORCE_OPENGL

Force opengl rendering. Useful to test Metal/DirectX/Vulkan only issues.
RENDERING_ENABLE_TRACE

Enable rendering tracing.

This has a potentially very high performance cost.

Best used in combination with full DEBUG builds which run the rendering layer in debug mode.

Multi / Single Threaded options
Multithreading is available for all supported build targets.

To enable Multithreading, click on the “+” sign at the bottom of the Build Configuration inspector
and add the DotsRuntimeScriptingSettings component:

Add Component
Q- DotsRuntimeScripting Settings{

Unity.Entities.Runtime.Build
O Inspector DotsRuntimeScriptingSettings

Dots Run
Enabl

Screen O

Revert Apply

Then you can check “Enable Multithreading”.

Note that Multithreading is not supported on Safari. One way to workaround is to set
multithreading on in the Common build configuration inherited by others, and then create a
specific WASM build configuration for Safari. The web template loading the build will have to be
changed to select the correct build.

0 Inspector
Common Build and Run Wasm Safari Build and Run

&, Commen (Build Configuration) & Wasm Safari (Build Configuration)

Dots Runtime Scripting Settings
Use Build Configuration ble Safety C Use Build Configuration

Use Build Configuration . Use Build Configuration

In the future, we plan to add an automatic fallback to Single threading for Safari and do more
work on Burst to improve web performance and size.

Note, due to the nature of how multithreading is supported in the DOTS Runtime Tiny
configuration, enabling Multithreading will automatically enable Burst Compilation as well. It is
not possible to have multithreading enabled without burst compilation enabled in DOTS Runtime
unless building for the non-Tiny configuration, Net Standard 2.0 on desktop.

DOTS C# Solution

Because of the environment constraints detailed earlier in the DOTS .NET Subset section, a
separate DOTS C# Solution from the regular Unity one needs to be created to enable
debugging for example. This DOTS C# Solution targets the .NET framework and assemblies
that are used during build with the DOTS Runtime, and can be built via Assets > Generate
DOTS C# Solution.

Generate DOTS C# Solution...
Open DOTS C# Solution

You'll get the following window allowing you to select the build configurations you want to be
included in the solution:
Generate DOTS C# Solution
Generate Solution

Select All Select None Expand All Collapse All

A
Include in Solution R Target Configuration Build C

TinyAquarium

Android Develop Android-Aquarium

Web (AsmJS) Develop Asmjs-Aquarium

Web (Wasm) Develop Wasm-Aquarium
Windows .NET - T Debug Windows-DotNet-Aquarium

Windows IL2CPP Develop Windows-il2cpp-Aquarium

The “Generate DOTS C# Solution” window list will be populated with the build configuration
assets available in the Unity project. Selecting any buildconfig in this window will show the
corresponding build configuration asset in the inspector.
You can also double-click to expand/collapse rows in the view, multi-select, and toggle via
spacebar.
Once the solution is generated you can launch it via
Assets > Open DOTS C# Solution or right click in the Project Explorer and it will launch your
preferred IDE. If you make code-only changes, you can build and run directly from your IDE
(currently tested with Visual Studio and Rider, but will be expanded in the future).
Some details to note:

e The project solution is named the name of the project, with “-Dots” at the end.

e After a Build/Build&Run is triggered at least once from the Editor for a specific Build

Configuration Asset, it will be preselected in the list of the DOTS C# Solution window.

.NET vs il2cpp Builds

DOTS Runtime builds can be built using the regular (mono or Microsoft) .NET runtimes or
Unity’s il2cpp runtime. When built for .NET, the end result is a pure .NET application (with native
code shared libraries). .NET builds are intended for development, while il2cpp builds are
intended for final builds.

Debugging with a DOTS Runtime/Project Tiny build
After creating the DOTS C# Solution (see DOTS C# Solution section) and opening it in your
IDE, you can set breakpoints and run and debug.

When you do a .NET based build from Unity with the Build & Run available in the Build
Configuration inspector, you need to attach to the process and not “Attach Unity Debugger”:

File Edit View Project Build Debug Test Analyze Tools Extensions Window Help Sea Ctrl+Q)

B-aW

we tinyaqua ~ Default ~ TinyAquarium.gen v P Start - ¥

Playerlnput.cs
TinyAquarium.gen v ‘l; TinyAquarium.InputCollecto
= Unity.Entities;
using Unity.Mathematics;
{ Unity.Tiny.Input;

Xoq|oo] se82inoSs ejeq

Attach to Process

=] TinyAquarium

‘ Connection type: Default

E“ 1€ class IHDUtCOlleCtOP : SySt Connection target: LAPTOP-CEN7RHLJ
= A OnUpda‘ Connection type information

The default connection lets you select processes on this computer or a remote computer running the Vis
(MSVSMON.EXE).

~ inputAxis = new float2
- input - World.GetOrcCrej Attach to: Automatic: Managed (v4.6, v4.5, v4.0) code

if (input.GetKey(KeyCode.W
inputAxis.y = 1;

if (input.GetKey(KeyCode.S
inputAxis.y = -1; Process D Title Type

if (input . GetKey(KeyCode.A TinyAquarium.exe 75496 Unity - DOTS Project Managed (v4.0.30319), x64

ik, Uik avn 50419 e

Available processes

However, if you want to debug an IL2CPP build for Web, Windows, macOS, iOS, or Android,
managed code debugging should be enabled at build time. It can be enabled in two ways:

e By default, the "Debug" configuration will enable managed code debugging. The
"Develop" and "Release" configurations will not enable managed code debugging by
default.

e Note that L2CPP Debug builds are faster to make, have Script Debugging enabled by
default, but it will affect performance and your app/game will run notably slower.
Release/Develop builds are longer to make and don't have Script Debugging by default,
but will run faster.

e For more control, add the "IL2CPP Settings" build component. The "Script Debugging"
option allows fine grained control of script debugging for any build configuration.

o In this case "Use build configuration" value means that the selected Configuration
will be followed. In this case “Debug” which has Script Debugging enabled by
default.

Dots Runtime Build Profile
Target Windows IL2CPP - Tiny
Configuration Debug

IL2CPP Settings

Script Debugging Use Build Configuration
Wait For Debugger v

o In this “Develop” Configuration, the IL2ZCPP Settings for Script Debugging is
enabled

Dots Runtime Build Profile

Target Windows IL2CPP - Tiny

Configuration Develop

IL2CPP Settings

Script Debugging Enabled
Wait For Debugger v

Once a player with managed code debugging is built and running, any IDE that supports
debugging of Unity players can be attached to it. For example in Visual Studio, you use Debug >
Attach Unity Debugger and select the “DOTS_Runtime” player:

Select Unity Instance X

DOTS

Project 4. Machine Type Port Information

DOTS_Runtime_Gam 127.0.0.1 Player 56000 PID:1242948

| Input IP || Refresh | | OK || Cancel |

The Unity manual contains details about how this works.

The "IL2CPP Settings" object also provides a "Wait For Debugger" option. This option is
disabled by default. It will cause the player to display a dialog before any user managed code is
executed. The player will not continue until this dialog is acknowledged by the user. While this
dialog is displayed, the user can attach a debugger to the player process.

Debug X

You can attach a managed debugger now if you want

localhost:8084/TinyTime.html X +

C @® localhost:8084/TinyTime

You can attach a managed debugger now if you want
Continue

https://docs.unity3d.com/Manual/ManagedCodeDebugging.html

You will see this dialog if you are trying to attach a debugger but haven’t selected the correct set
of options:

C# Debugger Attached |
You're trying to attach a debugger, but Debug Mode is
switched off in your Project.

When Unity is in Debug Mode, C# performance is
reduced, but you can attach a debugger.

Switching to Debug Mode also recompiles and reloads
all scripts.

You can enable Debug Mode temporarily for this
Editor session, switch it on

for all projects until further notice, or cancel attaching
the debugger.

If you switch it on for all projects, you can change it
later in the

"Code Optimization on Startup" setting in the
Preferences window.

| Enable debugging for this session | Enable debugging for all projects Cancel

When managed debugging is enabled for the Web platform, a special executable must be
running: websocket_to_psoix_proxy. This executable is part of the Emscripten installation, and
will be started and maintained by the Unity editor when the Build and Run or Run options are
used from the build settings.

Note that the web browser must support the Shared Array Buffers feature in order to use
managed debugging. In some browsers, this is enabled by default. In others, it must be
manually enabled. See https://caniuse.com/#feat=sharedarraybuffer for up-to-date information
about which browsers support it.

Debugging conversion systems:

Conversion happens in the Editor when making a build, and is one of the first steps of the build
process. The converted gameobject scenes will be serialized as entity scene files and will be
deployed to the build directory.
Conversion is incremental and triggered by a scripted importer, conversion systems only run if
the Editor detects the following:

- Modification in one of the scenes of the SceneList component.

- Modification of a dependent asset (texture, font, mesh, ..) used in one of the scenes.

- Modification of the build configuration used to build

- Incrementation of the version number of one of the conversion systems (see attribute

ConverterVersion).

To force re-run all conversion systems in your project you can dirty your global entity cache
asset (Assets/GlobalEntitySceneDependency.asset) by doing in the Editor: Dots->Clear Entities
Cache.

https://caniuse.com/#feat=sharedarraybuffer

To attach your IDE to the Editor and step into the code:
- Make sure to set up the option Code Optimization On Startup to Debug (Preferences ->
General in the Editor).
- Attach your IDE to an Asset Import Worker process not the standard Unity process.
(Conversion is run in a scripted importer).

Local Unity processes

€ 12044 Unity AssetimportWorker0 (TinySamples)

<) 20696 Unity (TinySamples)

Using Debug.Log()

On Desktop, Web, Android, and iOS, you can use Debug.Log() to display messages in the
console.

You need to ensure “Full Log (Developer Mode Only)” is enabled

For Web, the Editor and the running Web build must be on the same computer.

For Mobile, the Editor and the device need to be on the same Wifi. After pressing “Build and
Run”, the Editor should automatically connect to the mobile device. If that fails for any reason,
you may also enter the IP of the mobile device to connect via the “<Enter IP>” option.

B Console
Clear = Collapse Error Pause Editor

[10:46:08] DotsRuntimeWi Player Logging
Q Full Log (Developer Mode Only)

[10:48:08] DotsRuntifme A

Editor

[10:46:08] DotsRuntime Wi <Enter [P

id OnCreate()

Q [08:11:32] Autoconnected Player Initi

ase.OnCreate();

RequireSingletonForUpdat
InitEntityQue 6
UnityEngine.Debug.Log("

As mentioned below for Profiling, Debug.Log() with Web builds are only supported with one
instance of the Editor running at the same time.

Web Build & Run

Added with 0.25, you can now use Build & Run (from the Build Configuration inspector) for Web
builds:

3 i @ Inspector %2 ProjectSettings @ Inspector
R 4 #40 Wasm-Aquarium Build and Run
Assets > BuildConfigurations
&) Android-Aquarium

&% Asmjs-Aquarium Dependencies 1

& CommonAquarium : . : _
@ 10S-Aquarium Element O & CommonAquarium (BuildConfiguration) ® X

& Wasm-Aquarium (BuildConfiguration)

& Mac-DotNet-Aquarium + Add Element
& Mac-il2cpp-Aquarium

& Wasm-Aquarium

& Windows-DotNet-Aquarium - -
&% Windows-il2cpp-Aquarium TinyAquarium

Unity

To enable the “Run” part for web builds you No longer need to install the Unity WebGL Module,
as Project Tiny/DOTS Runtime for Web now includes its own local HTTP-WebServer.

Profiling

You can use the Profiler on Windows, Mac, iOS, Android and Web.The Profiler reports only CPU
information for now.

For Desktop and Mobile devices, the Editor Profiler will auto-connect to the local runtime started
by “Build & Run”.

For iOS & Android, the Editor and the device need to be on the same Wifi. If auto-connection
fails for any reason, enter the IP of the mobile device to connect via the “<Enter IP>" option.

For Web build, the runtime in browser will initiate the connection to the Editor, both must be
running on the same computer, and you must have only one instance of the Editor running at
the same time.

. [Slcenter @Local

Playerv @ »i Frame: 6 ar Clear on Play Call Stacks Eme :

Selected: EntityCommandBuffer.Playback “ @;inyﬂquarium

33ms (30FPS) localhost:8084/TinyAquarium.htr X

Global lllumination 16ms (B0FPS) C ® localhost
ul -
Others

Timeline CPU:16.71ms GPU:--ms

Main Thread Main Thread Frame (

Job
Loading
Scripting Threads

Background Job

Profiler
Other Threads

Profiling is enabled by default for Development and Debug builds. In the Build Configuration,
you can control how to enable/disable Profiling via the Dots Runtime Scripting Settings:

Dots Runtime Scripting Settings

Enable Safety Checks Use Build Configuration

Enable Profiler Use Build Configuration

Play-in-Editor

Starting with preview 0.28, the Play-in-Editor (in Game view via DOTS Hybrid mode) is no
longer supported and will be replaced in the future with an embedded DOTS Runtime player
taking over and replacing the Game view.

You can still play some Project Tiny samples in the Editor, but some features will not work
properly. For example Input requires to have “#if UNITY_DOTSPLAYER / using Unity.Tiny.Input;”
and a few more ““#if UNITY_DOTSPLAYER” in your code to work in both Editor & standalone.
For now we recommend you use “Built and Run” with the Windows/Mac DotNet build
configurations for the best result and still fast iteration. The Build process is incremental and
relatively fast when you’ve made only small changes.

Stay tuned for further improvements in this area.

GameObject/DOTS Features and properties mapping

This section highlights which features & properties are valid for Project Tiny, meaning they will
be converted from GameObijects to Entities and available at runtime.

Camera

Starting with preview 0.31, using multiple cameras is supported: it works very similarly than
Unity “classic” cameras. You create multiple cameras in the Editor, and use depth to order them.
Use Viewport Rect for sizing, rendering object layers and camera culling mask are used.

There are some known issues as of preview 0.31:
e The stacking ui mode for cameras does not convert properly yet. Use order/depth
instead.
e Disabling a camera at runtime might crash

Camera supported functionalities:

Wl v Camera
Backaground Type Solid Color
Background

Culling Mazk

Clipping Planes 0.03
1000

t Rect

Target Texture MNone (Render Texture)
Decclusion Culling

lse Pipelin

Use Pipeline Settings
Allow Dynamic Resoluiian
Volume Mask Default

Volume Trigger A Nene fTransform)

Renderer Type =z Pipeii

nth Texture lse Pipeli

Lse Pipelin

Target Display Display 1

Mesh Renderer

Each single submeshes of the mesh given by the mesh filter, and its associated material
(material are converted first) we create an entity with a MeshRenderer, a Simple/LitMeshRender
tag component. One entity mesh is created for each shared mesh asset in a subscene and
contains the whole mesh data (in a blob asset) that each mesh render is pointing to. One entity
material is created for each shared material in a subscene. Additional properties are not
supported at the moment.

% + Mesh Renderer

1
) MoleMaterialLit

H Mole (Mesh Filter)
Mesh Male

Material

Only 4 URP materials are supported right now:
Lit/Unlit and ParticleLit/ParticleUnlit as described in the Particle section below
- Universal Render Pipeline/Unlit (SimpleMaterial)

Opaque
Front

Advanced

- Universal Render Pipeline/Lit (LitMaterial)
Only the metallic workflow is supported:

al Render Pipeline/Lit

I E
Opaque
Front

Metallic Alpha

Light

Supported built-in functionalities:
Directional lights, Point Lights and Spot Lights are supported. Shadows are supported as
well for Directional Lights and Spot Lights.

Spot light without shadow is not supported.
A Maximum of 8 lights (directional+point+spot) and a maximum of 2 lights with shadows

Hard Shadows

Add Component

Additional functionalities

2 monobehaviours have been introduced:
e CascadedShadowMappedLight that does 4 cascades shadow mapping. The
cascade scale component must be clamped between 0 and 1 with x>y>z.
e AutoMovingDirectionalLight is recommended for automatically updating
directional light’s position and size.

CascadedShadowMappedLight

Scale

mera o Main Camera

AutoMoving DirectionalLight

Main Camera o Main Camera

Ambient Light

The ambient light is parameterizable per scene/subscene. Before updating the ambient light
make sure to open and activate the scene you want to edit. Double click on the subscene to
activate it and In The Editor go to Window - Rendering - Lighting. In the environment tab adjust
the ambient light color and intensity, only solid colors are supported at the moment.

Texture Compression Settings

Textures are now exported as Webp or PNG (Webp lossless by default). Webp is a image
compression format natively supported by most web browsers except on Safari, iOS Safari and
IE where we do have a fallback to decode to RGBA. On other platforms, we decode webp
images to RGBA on the runtime.

Currently there is a Build Component (TinyTextureCompressionSettings) to specify the format
globally and/or per texture.

The options for the webp compression are lossless if you want to preserve the quality or lossy
with a quality parameter (from 0 to 100) to compress with a higher ratio.

Tiny Texture Compression Settings

Web P

.
== Billboard

Format Type Web P

Texture Importer Settings:
NPOT textures with mipmaps or repeat wrap mode are not supported.

For the filter mode only Point and Trilinear are supported, the default filtering value is Linear.

e
Open

Default

' swvkira Alnko
UM Rapna

Repeat

Bilinear

MNormal Guality

Text Rendering
Text can be rendered in the scene. TextMeshPro is used for creating the font assets, but
TextMeshPro is not used for authoring. Functionality is very limited in this initial release.

Creating a compatible font asset

In order to create a font asset compatible with the Text Renderer component, first create a
TextMeshPro Font Asset (Window > TextMeshPro > Font Asset Creator). Select your font
(TTF/OTF/etc.). The “Render Mode” must be SMOOTH or SDF(AA) currently:

Font Settings

ce Font File asbanilasansBld

Generate Font Atlas

Configure the other settings as needed, and press Generate Font Atlas. Then press Save.
Give the font asset a name.

Displaying text in a scene
The following limitations currently exist, but will be removed in the near future:
e Text does not use a RectTransform. Text is drawn at a 3D world position, and can be
left, center, or right justified at that position. There is no anchoring.
Text cannot span multiple lines.
Text cannot auto-size to fit a particular area.
Text has only a single solid fill color. No separate outline color is supported.

Creating text in the editor
A new “Text Renderer Authoring” component is available:

v Display Text Authoring (Script)

Text
Hejjo Wyrld!.' Ctr

Size
Font ManilaSansBId Bitmap (TM ®

Color I

Alignment Center v

This exposes just the features that are available at runtime. In the editor, it creates a dynamic
mesh for display. It does not create a hybrid renderer mesh; the text is only visible while a
subscene is opened for editing.

Creating text dynamically at runtime

At runtime, you need an entity with a TextRenderer component and a TextRendererString buffer
component. The TextRenderer needs a reference to the font “material”’, which will be created by
conversion from a font asset. You'll need some way to find this entity. (For example by having
an authoring component with fields that link to your fonts. Eventually fixed by addressables or
similar.)

There are helper functions on "TextLayout™ that can help you set the DisplayText buffer element
from a string: TextLayout.SetEntityTextRendererString(EntityManager,
ui.LapLabel, S$"LAP {playerLap} / {race.LapCount}");

Changing text at runtime

If you change either the string or text properties, you must add the TextRendererNeedsUpdate
component to cause the mesh & data to be regenerated. If you use
SetEntityTextRendererString, it will add this component for you automatically.

3D FOG

Tiny supports adding distance-based fog to a scene using the Unity Editor or by adding it from
script. To add fog from the Editor, make sure that your Subscene is currently selected (see
“Scene Setup” in the Getting Started Guide). Open the Lighting Settings (Window > Rendering >
Lighting Settings) and scroll down to Other Settings.

® | ighting

Scene Baked Lightmaps

Directional Mode Directional

Default-Medium

Exponential Squared

Mone (Texture 2D)

Debug Settings

| imkt Deaba Wieiialivatiaem
Auto Generate Generate Lighting
0 Man-Directional Lightmaps 0B
Ma Lightmaps
Occupiad

Tatal Bake Tir

All fog settings are supported in Tiny. See the Lighting Window docs for descriptions of these
settings.

Fog can be added from script by adding the Fog component to the scene Entity.

2D

To support the development of 2D Projects and 2D instant games that are small in size and both
load and run quickly on mobile and web platforms, Project Tiny ships with the following
foundation set of 2D features:

e Sprite
e Sprite Renderer
e Runtime 2D rendering pipeline

https://docs.unity3d.com/Manual/lighting-window.html
https://docs.unity3d.com/Packages/com.unity.tiny.rendering@0.25/api/Unity.Tiny.Rendering.Fog.html
https://unity.com/solutions/instant-games

Once you have installed the required Editor version and third party tools, download the
pre-configured project template Tiny2D from the ProjectTinySample repository. This project
comes with Assets, Scripts and a Scene set up for Project Tiny development, so that you can go
straight into developing your new Project Tiny application. In addition, two 2D game demos
created with Project Tiny are available in the repository - TinyGems and TinySpaceship.

GameObject conversions

When working with DOTs, GameObijects located inside SubScenes are converted into their
Entity Component System (ECS) counterparts. This converted data is used during runtime in the
DOTs systems. Refer to ECS’ GameObject Conversion documentation for more details.

In the section below, we have listed the conversion of the components and assets in Tiny 2D.

Sprite

Here is a visual representation over how the unityEngine.sprite properties map over in ECS:

Entity
Unity.Tiny.Sprite

UnityEngine.Sprite

_|—1:> + Mesh : BlobAssetReference=SpriteMesh=
+ mesh
_]'

+ texture : Texture2D

Entity

[Runtime Texture Component]

Sprite Renderer

Only the following Sprite Renderer properties with green check marks are converted over to the
ECS environment:

© Inspector a

@ v Hexagon Static~
v)(Tag Untagged v Layer Default v

https://github.com/Unity-Technologies/ProjectTinySamples
https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinyGems
https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinySpaceship
https://docs.unity3d.com/Packages/com.unity.entities@0.14/manual/ecs_core.html
https://docs.unity3d.com/Packages/com.unity.entities@0.14/manual/gp_overview.html#gameobject-conversion

v [zl v Sprite Renderer o
Sprite [s]Square ®
Color 5

X Flip X Y

X Draw Mode Simple v

X Mask Interaction None v

X Sprite Sort Point Center v
Material Q Sprites-Default ®

¥ Additional Settings

Sorting Layer Default v
Order in Layer 0

Property Conversion details

Layer Converted as is. Is used for selective rendering from camera.

Sprite The Sprite data is converted and the

Unity.Tiny.SpriteRenderer stores a link to the
Unity.Tiny.Sprite Entity

Color Converted into a float4.
Sorting Layer Converted into a short.
Order in Layer Converted into a short.

Here is a visual representation over how the unityEngine.spriteRenderer properties map over
in ECS:

Entity
RendererzD

GameObject

+ Layer : int

+ RenderingLayer : int
UnityEngine.SpriteRenderer

= + SortingLayer : short
+ SortingLayerlD : int
= + OrderinLayer : short

+ SortingOrder : int
Unity.Tiny.SpriteRenderer

+ Sprite : Sprite

+ Sprite : Entity

IPLL
|

+ Colaor : Color

= + Color : floatd

And here is a visual representation of how the different 2D rendering Entities and their

components interact with each other:

[SpriteRenderer] Entity

SpriteRenderer

+ Material : Entity
+ Sprite : Entity

+ Color : floatd

Renderer2D

+ RenderingLayer : int
+ SortingLayer : shornt
+ OrderinLayer : short
+ Bounds : AABB

2D Entities Physics

2D Entities Physics is a package that provides tools to work with 2D physics in Project Tiny. The

o

[Material] Entity

[Empty Entity]

[Sprite] Entity

Sprite

+ Mesh : BlobAssetReference

+ Texture : Entity

[Texture] Entity

[Runtime Texture Component]

following features are partially supported by 2D Entities Physics:

Primitive Colliders
Compound Collider
Rigidbody 2D

Physics broadphase
Broadphase querying API

Refer to the 2D Entities Physics package documentation for more information.

Particle System (3D)

Overview

The Tiny particle system implementation mirrors a subset of the features available in Unity’s
Built-in Particle System (aka Shuriken). This allows users to add simple particle systems to Tiny

applications using the Unity Editor or by creating them from script. When created from the
Editor, the Unity particle system object is converted into Entities and consumed by Project

Tiny/DOTS Runtime.

https://docs.unity3d.com/Packages/com.unity.2d.entities.physics@latest
https://docs.unity3d.com/Manual/Built-inParticleSystem.html

Creating Particle Systems in the Editor

Particle systems can be created in the Editor the same way they can for Unity: by adding a
Particle System component to your scene and modifying its properties in the Inspector window
(see Shuriken usage docs).

Gotchas:
e Unsupported Features

Although only a subset of the Shuriken modules and properties are supported, the
Inspector window will display all options in the full Shuriken feature set. In a few cases,
the default values for an unsupported property will not match the default value in the
Editor, which may cause your preview in the Scene view to not match your Tiny
application. While tuning your particle effects, we recommend frequently referring to the
list of supported features in Tiny and running your Tiny application (using “Build & Run”)
to avoid relying on unavailable features.

e Scene Hierarchy
Like all other Unity objects that get converted and consumed by Tiny, particle systems
must be added into the Subscene as opposed to the top-level scene (see “Scene Setup”

in the Getting Started Guide).

e Play in Editor

Tiny particles do not support Playmode (i.e. they will not render in the Game view). You
can preview the particles in the Scene view, but it is possible that there will be
differences between the preview and Tiny application due to the Editor using the DOTS
Hybrid Renderer. The most reliable way to test particles is to use “Build & Run” to view
them in your Tiny application.

Creating Particle Systems from Script

Tiny particle systems can be created from script by adding the ParticleEmitter component, an
emitter source shape component (e.g. EmitterConeSource), and the ParticleMaterial component
to an Entity. Refer to the Project Tiny API docs for additional components. Be sure to reference
the docs that correspond to the version of Project Tiny you are using since the particle system
implementation is under heavy development.

Supported Features

The Tiny particles properties mirror a subset of the Shuriken properties. The Shuriken properties
are broken down into groups called “modules”. This section will cover which properties in each
module are supported in Tiny. If a module is not listed, then no properties in that module are
supported currently. For unsupported properties, the default values shown in the Inspector

https://docs.unity3d.com/Manual/PartSysUsage.html
https://docs.unity3d.com/Packages/com.unity.tiny@0.25/api/Unity.Tiny.Particles.ParticleEmitter.html
https://docs.unity3d.com/Packages/com.unity.tiny@0.25/api/Unity.Tiny.Particles.EmitterConeSource.html
https://docs.unity3d.com/Packages/com.unity.tiny@0.25/api/Unity.Tiny.Particles.ParticleMaterial.html
https://docs.unity3d.com/Packages/com.unity.tiny@0.25/api/Unity.Tiny.Particles.html

window are used unless stated otherwise. Refer to the Shuriken modules docs for descriptions
of the properties.

Varying Properties Over Time

Many of the Shuriken properties in the different modules support a dropdown menu that allows
you to select how this property should vary over time (see Shuriken usage docs). For all

properties that support this dropdown, only Constant and Random Between Two Constants
are supported.

' Particle System

Duration

" Constant
Curve
Random Between Two Constants

- Random Between Two Curves

Main Module

Particle System

Duration

Lacal

Rigidbody

Nane
A matic
Dizabled

Supported Properties

https://docs.unity3d.com/Manual/ParticleSystemModules.html
https://docs.unity3d.com/Manual/PartSysUsage.html

Duration

Looping

Start Delay

Start Lifetime

Start Speed

Start Size/Enable 3D Start Size

Start Rotation/Enable 3D Start Rotation
Start Color (Color or Random Between Two Colors)
Simulation Space (Local or World)
Max Particles

Auto Random Seed/Random Seed

Emission Module

« Emission

Supported Properties
e Rate over time
e Bursts (only one burst per particle system)
e Burst Settings (Count, Cycles, Interval)
Shape Module

Sphere, Hemisphere

Randam

Supported Properties
e Radius
e Randomize Direction
e Randomize Position

Randam

Supported Properties
e Angle
e Radius
e Randomize Direction
e Randomize Position
Circle

Supported Properties
e Radius
e Randomize Direction
e Randomize Position
Rectangle

Ractangla

Mone [Texture 2D

Supported Properties
e Randomize Direction
e Randomize Position

Renderer Module

+ Rendearar

Billboard

Mo Masking

off

Dafault

Layearl

Supported Properties
e Render Mode (Billboard or Mesh)
e Material (see below)
e Render Alignment
o Facing if Render Mode is set to Billboard
o Local if Render Mode is set to Mesh
e (Cast Shadows
o On if Material is Opaque
o Off if Material is Transparent
Material

Only materials that use the Universal Render Pipeline/Particles/Unlit or Universal Render
Pipeline/Particles/Lit shaders are supported. Refer to the Universal RP docs for descriptions of
the following material properties.

Universal Render Pipeline/Particles/Unlit

s/Unlit

Transparent
Alpha

Frant

Multiply

-
y

Priority

Supported Properties
e Surface Type
e Render Face
e Base Map (texture and color)

Universal Render Pipeline/Particles/Lit

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/shaders-in-universalrp.html

Shader Univers

Surface Options

-
Alpl

Front

Multiply

-
y

Supported Properties
e Surface Type
Render Face
Base Map (texture and color)
Metallic Map (texture, metallic constant, and smoothness constant)
Normal Map (texture and multiplier)
Emission Map (texture and color)

Summary of the Modules and properties supported at the moment:

e Particle System General Settings
e Duration
e Start Lifetime
e Start Speed
e Start Size/Enable 3D Start Size

Start Rotation/Enable 3D Start Rotation
Start color
Gravity modifier
Simulation Space "Local" or "World"
e Max Particles
e Emission Settings
e Rate over time
e Bursts (only one burst per particle system)
e Burst Settings (Count, Cycles, Interval)
e Shapes Settings
e Cone (Radius, Angle)
e Circle (Radius)
e Rectangle
e Renderer Settings
e Render Mode - Mesh and Billboard are supported
m Mesh uses Local Render Alignment and Billboard uses Facing Rendering
Alignment
e Material - only Universal Render Pipeline/Particles/Unlit and Universal Render
Pipeline/Particles/Lit are supported
e Other notes
e Constants and random value between two constants are supported.
e Animation curves are not yet supported.

We recommend you explore the TinyAquarium sample in
ithub.com/Unity-Technologies/ProjectTin mples which demonstrates how to set up
particles.

Move:

Ei%EI & @’D

Keyboard Touch

Shaders

Custom shader support for shaders written in a combination of ShaderLab and HLSL is in
progress. Currently there is initial support for custom shaders that have fixed parameters. More
specifically, shaders must have material properties that must match the ‘Universal Render

https://github.com/Unity-Technologies/ProjectTinySamples

Pipeline/Lit' shader, and vertex attributes and uniforms that match the Tiny lit shader. The fixed
parameters restriction is temporary and will not be addressed any further in this
document.

Tiny shaders are compiled using the Unity Shader Compiler during conversion and the compiled
shader data is formatted so it can be used by Project Tiny Renderer (based on Bgfx) .
Supported platforms are DX11/DX12, OpenGL, OpenGL ES 2.0, and Metal. Vulkan support is
coming soon.

Shader Conversion

Tiny shader compilation happens when running scene conversion from the Editor. The
conversion system only runs during the Tiny build if something in the scene has changed and it
needs to be reconverted. Modifying a shader used in the scene and reimporting it in the Editor
(reimport should happen automatically if Auto Refresh is enabled) should trigger the scene
conversion/shader compilation when you build. You can also force the conversion to run by
doing DOTS -> Clear Entity Cache(s) in the Editor before building.

Supported Features

Tiny shaders can be written like Unity shaders with some exceptions. Please refer to the
following sections for differences between Tiny and Unity shaders. Refer to Unity shader
documentation for any other guidance on shader authoring.

Uniforms

Supported Types

Uniform types are restricted to those supported by Bafx . Matrix 3x3 uniforms are not supported
because they are not supported in Unity and the cross compilation of them is not well tested.

Unity Built-in Uniforms

A limited set of the Unity built-in uniforms are supported. The supported uniforms are the ones
that have a one-to-one mapping to Bgfx built-in uniforms. If an unsupported uniform is used by a
shader, it will be treated as a custom uniform and Bgfx will expect that it will be set by the user.
Below is the list of supported Unity uniforms and the corresponding uniforms in Bgfx.

Unity Bgfx
“‘UNITY_MATRIX_M” or “unity_ObjectToWorld” “u_model”
“UNITY_MATRIX_V” or “unity_MatrixV” “u_view”

“‘UNITY_MATRIX_I_V” or “unity_MatrixInvV” “‘u_inview”

https://bkaradzic.github.io/bgfx/bgfx.html#_CPPv4N4bgfx11UniformTypeE
https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html
https://bkaradzic.github.io/bgfx/bgfx.html#_CPPv4N4bgfx13createUniformEPKcN11UniformType4EnumE8uint16_t

“‘UNITY_MATRIX_P” or “glstate_matrix_projection” | “u_proj”

“‘UNITY_MATRIX_VP” or “unity_MatrixVP” “u_viewProj”
‘UNITY_MATRIX_MV” or “unity_MatrixMV” “‘u_modelView”
“‘UNITY_MATRIX_MVP” or “unity_MatrixMVP” “u_modelViewProj”

Include “UnityShaderVariables.cginc” in your shader to have access to these variables. It is
worth noting that the mapping of uniforms from Unity to Bgfx is done by name, so declaring your
own uniform that has the same name as one of the supported Unity variables will result in the
built-in Bgfx uniform being used. This can be advantageous if a small number of built-in
uniforms is needed by your shader because it can result in a reduced uniform buffer size on
some platforms.

Uniform Buffers

Unity shaders allow for grouping uniforms into buffers on platforms that support this via the
CBUFFER_START/CBUFFER_END macros (see Predefined Macros). Please note that there is
no performance advantage to grouping uniforms that are only used within a single shader stage
(e.g. vertex) in a Tiny shader because all uniform buffers are consolidated into a single buffer
per shader stage.

Samplers

Decoupled samplers and textures (i.e. reusing a sampler with multiple textures) is not
supported. Inline sampler states are not supported. See Sampler States.

Sampler bind locations (indices) are implicitly assigned in the order that the samplers are
declared in the shader starting at 0. This can cause confusion since the index must be specified
when binding the sampler and samplers are omitted if they are not used by the shader. We have
plans to improve this experience in the future.

Vertex Attributes

All vertex attributes supported by Unity shaders are supported in Tiny shaders. The following is
the list of supported vertex shader input semantics:

POSITION
TANGENT
NORMAL
COLOR
TEXCOORDO
TEXCOORD1
TEXCOORD2
TEXCOORD3

https://docs.unity3d.com/Manual/SL-BuiltinMacros.html
https://docs.unity3d.com/Manual/SL-SamplerStates.html
https://docs.unity3d.com/Manual/SL-VertexProgramInputs.html

TEXCOORDA4
TEXCOORDS
TEXCOORDG6
TEXCOORD7
BLENDWEIGHTS
BLENDINDICES

Include Files

Shader include files are supported. Include files can be
e TextAssets created in the Editor
e Internal files that are not recognized by the Editor (e.g.
TinySamples\Packages\com.unity.tiny\Unity. Tiny.Rendering. Native\shadersrc~\common\
simplelit.cginc)
e Unity built-in include files (see below)
Shaders are only recompiled when the scene they are used in gets reconverted. Modifying an
include file that is recognized as an Asset in the Editor will trigger the reconversion. If modifying
an internal include file that is not recognized as an Asset by the Editor, you must clear the
entities cache (in the Editor: DOTS -> Clear Entity Cache(s)) to force the shader to be
recompiled. For more details on the shader conversion see the Conversion section.

Unity Built-in Include Files

Unity built-in include files can be used in shaders, but please be aware that not everything in
these files has been tested with Tiny shaders. Be aware of any functions in the include files that
use unsupported built-in uniforms (see section Unity Built-in Uniforms).

ShaderlLab

Shaders are written in a combination of ShaderLab and HLSL but only the HLSL snippets are
used in Tiny. More details on supported ShaderLab constructs (e.g. Properties) will be added
once custom uniforms are supported.

Variants

Currently there is no support for shader variants so shader keywords will be ignored. Shader
code can be shared across shaders using include files.

ShaderGraph

ShaderGraph shaders are not supported but may be in the future.

Platform Specific features

Game save system

https://docs.unity3d.com/Manual/SL-BuiltinIncludes.html
https://docs.unity3d.com/Manual/SL-ShaderPrograms.html

The game save system allows data to be saved to a file in persistent storage, so that data lives
beyond the lifetime of each gaming session. Each piece of data has a string key and a data
value. All of the game save functionality exists in the Unity. Tiny.GameSave namespace.

It's available on iOS/Android/Windows/Mac and Web.

Read from Persistent Storage

The GameSaveSystem calls into platform-specific file functions that read from persistent
storage. Tiny’s system information APIs can be used to learn where to read/write the game save
file on a particular platform.

At startup, the GameSaveSystem will read from a file. This operation is initiated by creating a
GameSaveReadFromPersistentStorageRequest component. That component includes the file
path to use to read in the game save file. The GameSaveSystem looks for these components in
its OnUpdate function and reads in the data into a local data structure that it manages. Your
game code can then read from and write to this data structure through the GameSaveSystem
read/write APIs.

Read/Write APIs and Supported Data Types

There are several functions that can be used to read from and write to the current game save
file. We currently support many data types, including all C# basic types, FixedString64,
FixedString128, Unity ECS components, and Unity ECS dynamic buffer components.

Here are some functions that show how to read some common types from the game save file:
public unsafe GameSaveResult Read<T>(FixedString64 key, ref T value) where T : unmanaged

public unsafe GameSaveResult Read<T>(FixedString64 key, ref T value, in T defaultValue) where T : unmanaged

public unsafe GameSaveResult ReadDynamicBuffer<T>(FixedString64 key, ref DynamicBuffer<T> value) where T : unmanaged

If the read is successful, GameSaveResult.Success if returned; if not, you may get
GameSaveResult.NotFound if the key name look-up fails, or other possible errors.

After modifying these values in your game code, they can be written to the game save file via:
public unsafe GameSaveResult Write<T>(FixedString64 key, T value) where T : unmanaged
public unsafe void WriteDynamicBuffer<T>(FixedString64 key, ref DynamicBuffer<T> value) where T : unmanaged

There are also ReadBytes and WriteBytes functions that allow you to work with a contiguous
block of bytes. This may be helpful if you want to serialize the data yourself or add support for a

type that the existing system does not support. These function prototypes are:
public unsafe GameSaveResult ReadBytes(FixedString64 key, void* data, int length);
public unsafe void WriteBytes(FixedString64 key, void* data, int length);

Write to Persistent Storage
At an appropriate time, after some modifications have been made, the game save data can be
written back out to a file. This is done by creating a

GameSaveWriteToPersistentStorageRequest component. This component includes the file path
to use to write out the game save file.

Data Migration considerations

After the initial release or your game or app, you may need to modify some types that have
been stored in your user’s game save files. The system is designed to be able to automatically
handle the addition and removal of fields within any of our supported types. Any modifications
more complex than that will have to be handled by the user.

If all your persistent data is stored in basic types by your code, then data migration is easy and
automatic. The system doesn’t actually do anything. For more complex types, like components,
the GameSaveSystem will store detailed type information in the game save file.

When v2.0 of your game is released, any fields that were removed from a component will just
be skipped over when that component is read. New fields will not be found in the game save
file, so your code will need to set them to a reasonable default, or pass in the default to the
version of our read APls that take default values.

On each read request, the system checks to see if the type being read has been modified. If it is
different, then the system will perform an upgrade process for that one piece of data. It knows
each field’s name, type, and offset, and can handle all fix-up related to fields that have been
added, removed, or whose offset has changed. After this update is performed, the new type
information will be written to the game save file, so the next time this data is looked up, the fast
code path can be taken. It should be noted that if ReadBytes and WriteBytes are used, the
GameSaveSystem has no knowledge of the underlying type, so it cannot perform any kind of
data migration. The responsibility for updating falls to the user in that case.

Multiple GameSave Files

It is possible to have multiple game save files (up to 16). When creating
GameSaveReadFromPersistentStorageRequest and
GameSaveWriteToPersistentStorageRequest components, the gameSavelndex in those
components must be set to a value from 0-15 to indicate which game save index to use for that
particular game save file. By default, these components just use zero, and so you are always
reading/writing to the same game save slot in memory.

When working with multiple game save files, you also need to set the current game save index.
This is done by setting GameSaveSystem.gameSavelndex to the index of the game save file
you want to use. This needs to be done before Read<T> and Write<T> calls to read/write each
data item.

Suspend, Resume & Quit Events (i0OS, Android)

With preview 0.24, we added support for Suspend, Resume & Quit Events on iOS and Android,
which allow you to add

Internal implementation notes:

In Unity.Platforms workspace (defined in Unity.Platforms.Common assembly) there are two
events and events handlers declared which can be used to notify systems if the application is
suspended/resumed or closed:

// sent when application is suspended or resumed
// Suspend value is true in case of suspend, false for resume
public struct SuspendResumeEvent

{
}

// sent when application is closed
public struct QuitEvent

{

}

public delegate void SuspendResumeEventHandler(object sender,
SuspendResumeEvent evt);

public delegate void QuitEventHandler(object sender, QuitEvent evt);

public static event SuspendResumeEventHandler OnSuspendResume;

public static event QuitEventHandler OnQuit;

public bool Suspend { get; }

To make systems react to these events in an application you need a reference to
Unity.Platforms.Common must be added to your application asmdef file.

= Hierarchy i @ Inspector %X Project Settings @ Inspector

+v TinyAquarium Impor
<& TinyAquarium H

Name TinyAquarium
General

Allow 'unsafe' Code

Auto Referenced

Assets > Scripts Override References

s Components No Engine References

B Systems
B TinyAquarium Define Constraints

Listis Empty

Assembly Definition References

Use GUIDs v

Unity.Burst B Unity .Burst

Unity.Entities B Unity.Entities
Unity.Mathematics B Unity.Mathematics
Unity.Transforms B Unity.Transforms
Unity.Tiny.Core B Unity.Tiny.Core
Unity.Tiny.Rendering B Unity.Tiny.Rendering
Unity.Tiny.Input B Unity.Tiny.Input
Unity.Tiny.RendererExtras B Unity.Tiny.RendererExtras
Unity.Tiny.Particles B Unity.Tiny.Particles
Unity.Tiny.Animation B Unity.Tiny.Animation

Unity.Platforms.Common B Unity.Platforms.Common

(o) {o}{o)i{o){o)ji{clji{c){clii{c(o}(C]

The following code should be added to OnStartRunning/OnStopRunning methods of a system
(typically some initialization system):

using Unit.Platforms;
protected override void OnStartRunning()

{

PlatformEvents.OnSuspendResume += OnSuspendResume;
PlatformEvents.OnQuit += OnQuit;

}

protected override void OnStopRunning()

{

PlatformEvents.OnSuspendResume -= OnSuspendResume;
PlatformEvents.OnQuit -= OnQuit;

}

And these methods should be implemented in the System:

public void OnSuspendResume(object sender, SuspendResumeEvent evt)

{

// process suspend/resume based on evt.Suspend value

public void OnQuit(object sender, QuitEvent evt)
{

// process application closed event

Possibilities to fire QuitEvent are very limited on both iOS and Android. On iOS this event is
being called only if a user closes the currently active app, on Android also there is no guarantee
that Activity.onDestroy() method (which fires QuitEvent) will be called if an application is killed.
This means that an app can be killed by system or by user and be not notified about this.
Suspend event is always being fired, so application should use it to store its state in case if it
would be later killed without notifying.

The way these events are implemented on both Android and iOS, handler methods are being
called from the main thread between Update cycles. It's important to keep in mind that in case of
Suspend and Quit events all processing should be implemented directly in handler, because
after suspend/quit there would be no new game cycle initiated.

Accelerometer/Gyro (iOS & Android)

On Mobile (iOS & Android), Accelerometer/Gyro are supported, as well as controlling screen
orientation. These features are demonstrated in the_TinyRacing sample which also showcased
the added Audio Pitch control (3D was), setup on CarAl entities to vary the sound of their
engines.

All available sensors in Tiny are implemented as singleton components.

Currently available sensors components for iOS and Android:

public struct AccelerometerSensor : IComponentData
{
public TimeData LastUpdateTime;
public float3 Acceleration;
}
Reports the acceleration of the device measured on a device both due to moving the device
around, and due to gravity pulling the device down. Acceleration property stores current device
acceleration vector value.

public struct GyroscopeSensor : IComponentData
{
public TimeData LastUpdateTime;
public float3 AngularVelocity;
}
Reports angular velocity of a device. AngularVelocity property stores current angular velocity
vector value.

public struct GravitySensor : IComponentData

{
public TimeData LastUpdateTime;

public float3 Gravity;
}

Reports the direction of the gravity vector relative to a device. Gravity property stores current
gravity vector value.

public struct AttitudeSensor : IComponentData

https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinyRacing

public TimeData LastUpdateTime;
public quaternion Attitude;
}
Reports the orientation of a device. Attitude property stores current device orientation
quaternion value.

public struct LinearAccelerationSensor : IComponentData
{
public TimeData LastUpdateTime;
public float3 Acceleration;
}
Reports the acceleration measured on a device due to moving the device around, without
gravity effect. Acceleration property stores current device acceleration vector value.
For all sensors LastUpdateTime value is TimeData struct which stores information of when
these sensors data were last updated.

Input system provides this API to use platform sensors:
public bool IsAvailable<T>() where T : struct, IComponentData
Returns true if a sensor with type T is available on the current hardware/platform.

public void EnableSensor<T>() where T : struct, IComponentData
If a sensor is available on the hardware/platform, create a singleton component for this sensor
and start getting data from this sensor, does nothing if a sensor is not available.

public void DisableSensor<T>() where T : struct, IComponentData
If a sensor is available on the hardware/platform, stop getting data from this sensor, does
nothing if a sensor is not available.

public void SetSensorSamplingFrequency<T>(int freq) where T : IComponentData
If a sensor is available on the hardware/platform, sets sampling frequency in Hz for this sensor,
does nothing if sensor is not available. When setting sampling frequencies, there may be limits
on the range of frequencies supported by the underlying hardware/platform. Also for iOS there
is one underlying physical sensor for Attitude, Gravity and LinearAcceleration, so changing
sampling frequency for any of these logical sensors changes sampling frequencies for other two
as well.

public int GetSensorSamplingFrequency<T>() where T : struct, IComponentData
If a sensor is available on the hardware/platform, returns sampling frequency in Hz for this
sensor, returns 0 if sensor is not available. For Android due to platform limitations this method
returns a value which was set previously via SetSensorSamplingFrequency method (default
value is 50). For iOS this method returns actual sampling value as reported by system.

public bool CompensateForScreenOrientation { get; set; } = true;
If this setting is enabled, rotation values reported by sensors are rotated around the Z axis as
follows:
for devices with natural Portrait orientation (all phones, iPads, some Android tablets)
ScreenOrientation.Portrait - values remain unchanged.

ScreenOrientation.PortraitUpsideDown - values rotate by 180 degrees.
ScreenOrientation.Landscapeleft - values rotate by 90 degrees.
ScreenOrientation.LandscapeRight - values rotate by 270 degrees.

for devices with natural Landscape orientation (some Android tablets)
ScreenOrientation.LandscapeRight - values remain unchanged.
ScreenOrientation.Portrait - values rotate by 270 degrees.
ScreenOrientation.PortraitUpsideDown - values rotate by 90 degrees.
ScreenOrientation.LandscapeLeft - values rotate by 180 degrees.

This setting is enabled by default.

To use sensors app should reference Unity.Tiny.Input in asmdef file.

To start using any kind of sensor it is required to check if this sensor is available in the system:
var availableTSensor = World.GetExistingSystem<InputSystem>().IsAvailable<TSensor>();
If sensor is available, it is possible to enable it to start getting data:
World.GetExistingSystem<InputSystem>().EnableSensor<TSensor>();

In OnUpdate method it is required to check if data from sensor are available:

var dataAvailableTSensor = HasSingleton<TSensor>();

It makes sense to stop checking this once sensor singleton becomes available, because this is
a relatively expensive request.

After sensor singleton became available, it is possible to use its data:

var dataTSensor = GetSingleton<TSensor>();

Multi-touch (iOS & Android)

Tiny supports multi-touch events for both Android and iOS. To use multi-touch app should
reference Unity.Tiny.Input in asmdef file.

The TinyPhysics sample & tutorial demonstrates how you can use it
(https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinyPhysics - check the
PointerSystemBase.cs to start)

Touch events are accessible via these InputSystem methods:
public bool IsTouchSupported()

Returns true if the current device produces touch input responses. This value may not be
accurate until a first touch occurs.

public int TouchCount()
Returns the number of currently active touches
public Touch GetTouch(int index)

Retrieves information for a specific touch point. The index ranges from 0 to the value returned
by TouchCount.

https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/TinyPhysics

Information about touches is passed as Touch structs:

public struct Touch

{

// Specifies the difference, in pixels, between the touch point's X
coordinate

// in the current frame and the previous frame. This tells you how far the

// touch point has moved horizontally in the browser or application window.

// Positive values indicate rightward movement, and negative values leftward
movement.

public int deltaX;

// Specifies the difference, in pixels, between the touch point's Y
coordinate

// in the current frame and the previous frame. This tells you how far the

// touch point has moved vertically in the browser or application window.

// Positive values indicate upward movement, and negative values downward
movement.

public int deltay;

// A unique identifier for the finger used in a touch interaction.
public int fingerId;

// Specifies the life cycle state of this touch. The TouchState
// enum defines the possible values
public TouchState phase;

// Specifies the absolute X coordinate of the touch, in pixels on the browser
// or application window. A value of © corresponds to the leftmost edge of

// the window. The higher the value, the farther right the coordinate.

public int x;

// Specifies the absolute Y coordinate of the touch, in pixels on the browser
// or application window. A value of © corresponds to the bottommost edge of
// the window. The higher the value, the farther up the coordinate.

public int y;

}s

phase value can be one of the TouchState enum:

public enum TouchState

{
// The initial reported state for new touch points.
Began,

// Specifies that the touch point's position changed between the
// previous frame and this frame.
Moved,

// Specifies that the touch point's position did not change between
// the previous frame and this frame.
Stationary,

// Specifies that the touch point is expired. Expired Touch points
// are reported in Ended state for one frame, before being cleared
// from the list of registered touches.

Ended,

// Specifies that the operating system or an event interrupted the
// touch interaction.

///

// For example if an incoming call causes the the operating system
// to deliver a popup message, the application or tab switches

// from one context to another. Also happens when the screen is rotated.

Canceled

}

Code example to process touch events:

protected override void OnUpdate()

{

var Input = World.GetExistingSystem<InputSystem>();
if (Input.IsTouchSupported() && Input.TouchCount() > 9)
{

for (var i = @; i < Input.TouchCount(); i++)
{

var itouch = Input.GetTouch(i);

var pos = new float2(itouch.x, itouch.y);
// process touch with pos coordinates

}
}

Native Plugins (iOS & Android)

Android

There is support for aar, jar, c++, Java and Kaotlin files.

To add aar, jar, Java, Kotlin files to the project it is required to place them in the “android~"
folder in your assembly. These files would be automatically copied to specific directories inside
the Gradle project. C++ files should be placed in the “cpp~” folder in your assembly. During the
build process they would be compiled into a static library and then this library would be linked
with other static libraries to one project specific dynamic library.

From c++ code these helper methods are available (<AndroidWrapper.h> should be included)

JavaVM* Unity_Get_JavaVM()

Returns current Java VM which can be used for JNI calls.

jobject Unity_Get_AndroidActivity()

Returns pointer to current Activity.

Also JavaVMThreadScope helper class is available. This class can be used if it required to call
Java methods from C++ using such pattern:

void java_wrapper_method()

{
JavaVMThreadScope javaVM;
INIEnv* env = javaVM.GetEnv();
jclass clazz = env->FindClass(className);
jmethodID method = env->GetStaticMethodID(clazz, methodName, methodSignature);
env->CallStaticVoidMethod(clazz, method);
}

When an instance of JavaVMThreadScope class is being created it attaches the current thread
to JavaVM and after that it is possible to use GetEnv() method to get a current pointer to the
current JNI environment. When an instance of JavaVMThreadScope class is being destroyed it
detaches current thread from JavaVM. Also in Debug configuration JavaVMThreadScope
destructor checks and logs exceptions which might happen while calling Java methods.

From Java it is possible to access current Activity via:
com.unity3d.tinyplayer.UnityTinyActivity getActivity()

To use these helper methods and class it is required to reference “Unity.Tiny.Android”
assembly from asmdef file.

For now in Tiny there is no direct access to Java native methods from C#. So it is required to
use intermediate C++ level to do this.

i0S
There is support for m/mm and c++ files

m/mm/c++ files should be copied in the “cpp~" folder in your assembly. During the build process
they are compiled into a static library and this library is then added to the XCode project.

From m/mm/c++ code this helper method is available (<IOSWrapper.h> should be included)
UIViewController* Unity_Get_ViewController()
Returns pointer to current UlViewController.

To use this helper method it is required to reference “Unity.Tiny.IOS” assembly from asmdef file.

Single HTML File Output (Web)

For Web builds you can choose to enable the "Single File Output" option, which can be found
under “Emscripten Settings” in the Build Configuration. When selected, Unity produces a single
HTML file, that contains all the supporting files and assets encoded as base64. This format is
required for some distribution platforms.

Emscripten Settings X

Emcc Cmd Line -s TOTAL_MEMORY=128MB -s ALLOW_MEM
Single File Output v

Interacting with browser scripting (Javascript/C# interoperability)

When building content for the web, you might need to communicate with other elements on your
web page. Or you might want to implement functionality using Web APIs which Project Tiny
does not currently expose by default. In both cases, you need to directly interface with the
browser’s JavaScript engine. This can be achieved in the following ways.

JavaScript plugins

The recommended way of using JavaScript in your project is to add your JavaScript code to
your project, and then call the added functions directly from your C# script code. In order to do
S0, you need to create a JavaScript plugin, embedding JavaScript functions which should be
called from C#. JavaScript plugins should be put under “s~”folder next to the “.asmdef”file. A
JavaScript plugin should have a .js extension and the following syntax:

mergeInto(LibraryManager.library, {
MyJavaScriptFunctionl: (...

¥
MyJavaScriptFunction2:

}s

MyJavaScriptFunctionN:

e
1)

It is possible to use multiple JavaScript plugins in your project.

Calling JavaScript functions from C# scripts

JavaScript functions can be called with boolean, number and string arguments and also return
values of those types. Strings however should be handled in a specific way. When a string is
passed from C# to JavaScript, the corresponding JavaScript function receives a pointer to a
null-terminated UTF-8 string on the heap, which can be converted to a JavaScript string using a
predefined UTF8ToString() function. When a JavaScript function needs to return a string to C#,

it should first allocate a null-terminated UTF-8 string on the heap (using predefined
lengthBytesUTF8(), _malloc() and string ToUTF8() functions) and then return a pointer of that
allocated string to C#. This is demonstrated in the following example:

mergeInto(LibraryManager.library, {

PrintHello: O {
console.log("[JavaScript] PrintHello: " + "Hello");

}s

PrintString: (pStr) {
str = UTF8ToString(pStr);

console.log("[JavaScript] PrintString:
¥

+ str);

AddNumbers: (x, y) {
console.log("[JavaScript] AddNumbers:
X +Y;

}s

ReceiveString: O A
str = "A string passed from JavaScript to C#";
bufferSize = lengthBytesUTF8(str) + 1;

buffer = malloc(bufferSize);
stringToUTF8(str, buffer, bufferSize);

buffer;

You can now call JavaScript functions defined in the JavaScript plugin directly from C# if you
declare them using [Dllimport("__Internal”)] syntax:

Unity.Entities;
System.Runtime.InteropServices;

MySystem : SystemBase
[D11Import("__Internal")]
PrintHello();

[D11Import("__Internal™)]
PrintString(str);

[D11Import("__Internal")]
AddNumbers (X, y);

[D11lImport("__Internal™)]
ReceiveString();

OnCreate()

PrintHello();

PrintString("A string passed from C# to JavaScript");
Console.WriteLine("[C#] AddNumbers: " + AddNumbers(5, 7));

Console.WriteLine("[C#] ReceiveString: + ReceiveString());

OnUpdate()

Expected console output:

[JavaScript] PrintHello: Hello

[JavaScript] PrintString: A string passed from C# to JavaScript
[JavaScript] AddNumbers: 5 + 7

[C#] AddNumbers: 12

[C#] ReceiveString: A string passed from JavaScript to C#

Working with arrays

When calling a JavaScript function from C# with an array argument, the function will receive a
pointer to the first element of the array, which is stored on the heap. If the size of the array is not
known in advance, then the size should be also provided as an argument to the JavaScript
function. Array elements can be accessed from JavaScript using the following predefined typed
arrays: HEAPS8 (sbyte), HEAPUS8 (byte), HEAP16 (short), HEAPU16 (ushort), HEAP32 (int),
HEAPU32 (uint), HEAPF32 (float) and HEAPF64 (double). Note that when accessing a value of
a typed array, the pointer should be shifted accordingly to the size of the used type.

Here is an example of processing different types of arrays:

mergeInto(LibraryManager.library, {

ProcessByteArray: function (pArray, size) {
array = HEAPUS8.subarray(pArray, pArray + size);
console.log("[JavaScript] ProcessByteArray: " + array);
(i =0; i < array.length; i++)
array[i] += 10;

}s

ProcessShortArray: function (pArray, size) {

array = HEAP16.subarray(pArray >> 1, (pArray >> 1) + size);
console.log("[JavaScript] ProcessShortArray: " + array);

(i =0; i < array.length; i++)
array[i] += 20;

}s

ProcessUintArray: function (pArray, size) {

array = HEAPU32.subarray(pArray >> 2, (pArray >> 2) + size);
console.log("[JavaScript] ProcessUintArray: " + array);
(i =0; i < array.length; i++)
array[i] += 40;
})

ProcessFloatArray: function (pArray, size) {

array = HEAPF32.subarray(pArray >> 2, (pArray >> 2) + size);
console.log("[JavaScript] ProcessFloatArray: " + array);
(i =0; i < array.length; i++)
array[i] *= 0.5;

}s

ProcessDoubleArray: function (pArray, size) {

array = HEAPF64.subarray(pArray >> 3, (pArray >> 3) + size);
console.log("[JavaScript] ProcessDoubleArray: " + array);
(i =0; i < array.length; i++)
array[i] *= 0.25;
})

IDE

And the corresponding C# code would be:

System;
Unity.Entities;
System.Runtime.InteropServices;

MySystem : SystemBase

[D11lImport("_Internal™)]
ProcessByteArray([1 array, size);

[D11lImport(" Internal™)]
ProcessShortArray([1 array, size);

[D11lImport("_Internal™)]
ProcessUintArray([1 array, size);

[D11lImport(" Internal™)]
ProcessFloatArray([1 array, size);

[D11lImport("_Internal™)]
ProcessDoubleArray([] array,
size);

string ArrayToString<T>(T[] array)
{
var str = "";
for (var i = @; i < array.Length; i++)
str += (i == 0 ? "" : ",") + array[i];
return str;

protected override void OnCreate()
{
var byteArray = new byte[] { 1, 2, 3 };
ProcessByteArray(byteArray, byteArray.Length);
Console.WriteLine("[C#] processed byteArray:
ArrayToString<byte>(byteArray));

var shortArray = new short[] { 1, 2, 3 };
ProcessShortArray(shortArray, shortArray.Length);

Console.WriteLine("[C#] processed shortArray: +
ArrayToString<short>(shortArray));

var uintArray = new uint[] { 1, 2, 3 };

ProcessUintArray(uintArray, uintArray.Length);
Console.WriteLine("[C#] processed uintArray:
ArrayToString<uint>(uintArray));

var floatArray = new float[] { 1, 2, 3 };
ProcessFloatArray(floatArray, floatArray.Length);

Console.WriteLine("[C#] processed floatArray: +
ArrayToString<float>(floatArray));

var doubleArray = new double[] { 1, 2, 3 };

ProcessDoubleArray(doubleArray, doubleArray.Length);

Console.WriteLine("[C#] processed doubleArray: " +
ArrayToString<double>(doubleArray));

}

protected override void OnUpdate()

Expected console output:

[JavaScript] ProcessByteArray: 1,2,3
[C#] processed byteArray: 11,12,13
[JavaScript] ProcessShortArray: 1,2,3
[C#] processed shortArray: 21,22,23
[JavaScript] ProcessUintArray: 1,2,3

[C#] processed uintArray: 41,42,43
[JavaScript] ProcessFloatArray: 1,2,3
[C#] processed floatArray: 0.5,1,1.5
[JavaScript] ProcessDoubleArray: 1,2,3
[C#] processed doubleArray: 0.25,0.5,0.75

Using arrays might be particularly beneficial if you perform heavy interaction between C# and
JavaScript, which involves processing of a significant amount of data. Instead of allocating a
new block of memory on each JavaScript call, all the communication can be performed through
a large enough buffer preallocated on C# side.

Calling C# callbacks from JavaScript

In some situations you need to call a C# callback from JavaScript. In order to do this, you need
to create a JavaScript plugin function which receives a C# callback as an argument, so that it
can be called later using a dynCall_*() function with the appropriate function signature.

“y 9 "y

Function signature is combined from the following letters: “v” (void), "i” (integer, pointer, bool), "f’
(float) and “d” (double). The first letter corresponds to the return type, while the remaining letters
correspond to the function arguments. For example:

e static void callback(float, double)

corresponds to a “vfd” signature and can be called using dynCall_vfd() function.
e static bool callback(int, string)

corresponds to a “iii” signature and can be called using dynCall_iii() function.

The first argument of a dynCall_*() function is a pointer to the callback function in the function
table. The remaining arguments of dynCall_*() correspond to the arguments provided for the
callback function.

Below is an example, demonstrating how to call C# callback functions from JavaScript. One of
the callbacks is called just once and prints a predefined message to the console. Another
callback is called every second and prints the provided arguments (iteration index and current
time string) to the console, it also returns a bool, indicating whether callback iterating should
continue.

mergeInto(LibraryManager.library, {

SetSimpleCallback: (pSimpleCallback) {
console.log("[JavaScript] SetSimpleCallback");

setTimeout (0O {

dynCall v(pSimpleCallback);
}, 0);
bs

SetTimerCallback: (pTimerCallback) {
console.log("[JavaScript] SetTimerCallback");

iteration = 0;
intervallID = setInterval(timerCallback, 1000);

timerCallback () {
iteration++;

timeString Date().toLocaleTimeString();

bufferSize = lengthBytesUTF8(timeString) + 1;

buffer = malloc(bufferSize);
stringToUTF8(timeString, buffer, bufferSize);

continuelterating = dynCall iii(pTimerCallback, iteration,
buffer);

_free(buffer);

(!continueIterating)
clearInterval(intervallD);

IDE

Then you can send C# callbacks to JavaScript in the following way:

System;

Unity.Entities;

System.Runtime.InteropServices;
MySystem : SystemBase

MonoPInvokeCallbackAttribute : Attribute

MonoPInvokeCallbackAttribute() {}
MonoPInvokeCallbackAttribute(Type t) {}

[MonoPInvokeCallback (typeof (Action))]
SimpleCallback()

Console.WriteLine("[C#] SimpleCallback called");

[D11lImport("_Internal™)]
SetSimpleCallback(Action callback);

TimerCallbackDelegate(iteration, timeString);

[MonoPInvokeCallback (typeof (TimerCallbackDelegate))]
TimerCallback(iteration, timeString)

Console.WriteLine("[C#] TimerCallback called with iteration: +

iteration + " and timeString: " + timeString);
iteration < 5;

[D11Import("__Internal")]

SetTimerCallback(TimerCallbackDelegate

timerCallback);
OnCreate()
SetSimpleCallback(SimpleCallback);

SetTimerCallback(TimerCallback);

OnUpdate()

Expected console output:

[JavaScript] SetSimpleCallback

[JavaScript] SetTimerCallback

[C#] SimpleCallback called

[C#] TimerCallback called with iteration: and timeString:

[C#] TimerCallback called with iteration: and timeString:
[C#] TimerCallback called with iteration: and timeString:
[C#] TimerCallback called with iteration: and timeString:
[C#] TimerCallback called with iteration: and timeString:

Adding raw JavaScript code to the build

In some situations you might need to append raw JavaScript code to the generated build. For
example, this can be some JavaScript library or some other code which has to be called from a
JavaScript plugin. One way to achieve this would be to modify the default “tiny_shell. htmFl
template file and add the necessary JavaScript code there. Another way to do this, would be to
simply put all the necessary JavaScript code under under “prejs~” or “postjs~” folders next to
the “.asmdef”file.

The contents of all the .js files under “prejs~” folder will be appended at the top of the JavaScript
runtime of the generated build, while contents of all the .js files under “postjs~” folder will be
appended at the bottom of the JavaScript runtime. Functions declared in the appended
JavaScript code can be accessed from JavaScript plugins, but can not be imported into C#
scripts.

Let’s consider the following C# script:

System;
Unity.Entities;
System.Runtime.InteropServices;

MySystem : SystemBase

[D11Import("__Internal")]

CallRawJavaScriptFunction();
OnCreate()

CallRawJavaScriptFunction();

OnUpdate()

The following “Assets/.../js~/MyPlugin.js” plugin:

mergeInto(LibraryManager.library, {
CallRawJavaScriptFunction: O {
RawJavaScriptFunction();

B
1)

And the following “Assets/.../prejs~/MyRawdJavaScript.js” file:

RawJavaScriptFunction() {

console.log("[JavaScript] RawJavaScriptFunction");

}

Then the expected console output will be:

[JavaScript] RawJavaScriptFunction

Using web templates

When building content for the web, you might want to use your own html code for the main page
or add additional files, such as css styles, JavaScript libraries or images, to the build. This can
be easily achieved by using web templates.

Web template structure

Web template is a folder which contains files which should be merged with the generated build.
Web template should contain a “tiny_shell.html” file which is treated as the main html. The
“tiny_shell.html” file should contain a “{{{ TINY_SHELL }}}" (Case Sensitive) macro which will be
expanded at build time into the JavaScript code necessary to load the build.

The default Tiny template can be found under the following folder:
“Packages/com.unity.dots.runtime/LowLevelSupport~/WebSupport/WebTemplates/Default”

The default template contains the following “tiny _shell.html” file:

<!doctype html>
lang="en-us">
>
charset="utf-8">
name="viewport" content="width=device-width, initial-scale=1,
user-scalable=0">
</ >
< id="waitForManagedDebugger" style="display:none">
style="text-align:center;">
id="waitForManagedDebuggerMessage" ></ >
onclick="doneWaitingForDebugger()">Continue</

style="margin:0px; border:none; overflow:hidden; display:block;">
id="error_log"></ >
< id="UT_CANVAS" tabindex="1" style='display:block;
touch-action:none; '></ >

All the other files and subfolders from the web template folder will be automatically copied
unprocessed to the output directory at build time. A web template can reside in any folder on the

drive. For example, it might be convenient to store custom web templates under the “Assets”
folder.

Creating a custom web template

Let’s consider an example, when we would like to add a favicon to the generated build. So let’s
create an “Assets/MyTemplate” folder, and put the following files there:

e Assets/MyTemplate/favicon.png, which will be used as the website icon;
e Assets/MyTemplate/tiny_shell.html, which contains the following html code:

<!doctype html>
lang="en-us">
>
charset="utf-8">
rel="icon" href="favicon.png" type="image/png"/>

Now we can specify the location of our custom web template folder “Assets/MyTemplate” in a
“Web Template Folder” field under the “Wasm Output Settings” component (the specified path
can be either absolute or relative to the project root):

Wasm Output Settings
Output Single HTML File
Minify HTML File v
Minify Qutput With Closure
Embed Cpu Profiler
Embed Memory Profiler
Include Symbols For Browser Callstacks
Emit Runtime Memory Debug Checks
Emit Runtime Allocation Debug Checks

Web Template Folder Assets/MyTempIate|

When building the project, the contents of the provided “tiny_shell.html” file will be used as the
code of the main build html, while the additional “favicon.png” file from the web template folder
will be copied into the output build folder.

If the “Web Template Folder” field is left empty, then the default Tiny template will be used for
the generated build.

Screen orientation

Screen & Device Orientation APIs

Two related parameters are being used to control orientation in the API:

e Device orientation — how the device is being physically held (can be Unknown if device
lies on the table face up or face down)
e Screen orientation — how the screen is being oriented

For both device and screen orientation values ScreenOrientation enum (defined in Unity.Tiny
workspace in Unity.Tiny.Core assembly) is being used.

[Flags]

ScreenOrientation

Unknown =

Portrait = 1,
PortraitUpsideDown = 2,
ReversePortrait = 2,
Landscape = 4,
LandscapelLeft =

LandscapeRight

ReverselLandscape

AutoRotationPortrait = Portrait | ReversePortrait,
AutoRotationlLandscape = Landscape | Reverselandscape,

AutoRotation = Portrait | ReversePortrait | Landscape | ReverselLandscape

To make this enum more familiar for both Android and iOS developers and also to avoid
problems with devices with natural Landscape orientation some duplicate values are added. But
unlike iOS, to avoid confusion, we are using the same values for both device and screen
orientation. Landscapeleft/LandscapeRight have the same meaning as in big Unity. Required
screen orientation can be set as a mask of enabled values. Some commonly used mask values
are also included in the ScreenOrientation enum. When the mask value is being set or the
physical device orientation is changed actual screen orientation is calculated as an intersection
of the current device orientation and the screen orientation mask. If there is no intersection, then
these rules are applied:

e |f possible the system tries to follow the current device portrait/landscape orientation. For
example, if current device orientation is Landscape, but current mask allows
ReverseLandscape (not Landscape), then ReverseLandscape would be selected.

e |[f there is no way to follow current device portrait/landscape orientation, then screen
orientation would be selected from the mask using this priority: Portrait, Landscape,
ReversePortrait, ReverseLandscape.

These methods are declared in WindowSystemBase class (defined in Unity.Tiny workspace in
Unity.Tiny.Core assembly) and are implemented in platform specific Window systems:

void SetOrientationMask(ScreenOrientation orientation);
e Android/iOS: Sets current orientation mask, rotates screen if required. Mask cannot be 0.

e Other platforms: Does nothing

Note: For iPhone devices without a physical Home button (iPhone X, XS, XR and similar),
PortraitUpsideDown screen orientation is disabled. Trying to set the mask with this only
orientation on such devices doesn’t change the current orientation mask. Also on such devices
if the current mask allows this orientation screen would never rotate to this orientation even if
the device is being held in Portrait Upside-down orientation.

ScreenOrientation GetOrientationMask();

e Android/iOS: Returns current orientation mask
e Other platforms: Returns current orientation (the same as GetOrientation())

ScreenOrientation GetOrientation();

e Android/iOS: Returns current screen orientation
e WebGL: Returns Unknown value (considering implementation for later)

e Other platforms: Returns Landscape if window width >= window height, Portrait
otherwise

These methods can be called like this:

World.GetExistingSystem<WindowSystem>().SetOrientationMask(ScreenOrientation.Auto
Rotation);

var mask = World.GetExistingSystem<WindowSystem>().GetOrientationMask();
var orientation = World.GetExistingSystem<WindowSystem>().GetOrientation();

In Unity.Platforms workspace there are two events and events handlers declared which can be
used to notify systems if actual device and screen orientation are changed:

DeviceOrientationEvent

Orientation { H

ScreenOrientationEvent

Orientation { .

To make system react to these events reference to Unity.Platforms.Common must be added to
application asmdef file

ScreenOrientationEventHandler(sender,
ScreenOrientationEvent evt);

DeviceOrientationEventHandler(sender,
DeviceOrientationEvent evt);

ScreenOrientationEventHandler OnScreenOrientation;

DeviceOrientationEventHandler OnDeviceOrientation;

Orientation values in these structs actually are of ScreenOrientation enum type.

To make system react to these events this code should be added to
OnStartRunning/OnStopRunning methods:

OnStartRunning()

PlatformEvents.OnDeviceOrientation += OnDeviceOrientation;

PlatformEvents.OnScreenOrientation += OnScreenOrientation;

OnStopRunning()

PlatformEvents.OnDeviceOrientation -= OnDeviceOrientation;
PlatformEvents.OnScreenOrientation -= OnScreenOrientation;

And these methods should be implemented in this System:

public void OnDeviceOrientation(sender, DeviceOrientationEvent evt)

{

}

public void OnScreenOrientation(sender, ScreenOrientationEvent evt)

{

DeviceOrientationEvent handlers are being called from the main app thread between update
cycles. ScreenOrientationEvent handlers are being called from the current WindowSystem
OnUpdate method.

If orientation is locked in system device settings, then DeviceOrientationEvent is not being
sent or automatically processed. But once orientation is unlocked (even while the app is
running) sending/processing of DeviceOrientationEvent is restored. While orientation is locked
it is still possible to force screen orientation change from scripts using SetOrientationMask
method.

On iOS DeviceOrientationEvent may be sent with ScreenOrientation.Unknown value. This
happens when iOS reports one of the Unknown/FaceUp/FaceDown values for the current
device orientation.

Non mobile platforms never send DeviceOrientationEvent / ScreenOrientationEvent.

Screen Orientations build component

Both Android and iOS build targets support Screen Orientations component which can be used
to limit rotation possibilities for an application. By default this component allows auto-rotation to
all 4 possible orientations.

If this component is added to Build Configuration, it is possible to limit the screen orientation to
some particular value:

¥ Screen Orientations X

Default Orientation Poartrait *

Or to set default orientation to Auto Rotation and limit orientations using checkboxes:

¥ Screen Orientations X
Default Orientation Auto Rotation v
Allowed Orientations for Auto Rotation
Partrait '
Reverse Portrait (Upside Down)
Landscape (Left))

Reverse Landscape (Right)

For both Android and iOS using this component in Build Configuration means that the
application will never be able to rotate to orientations which are not allowed. Trying to set
orientation mask to some value which has no common values with orientations from this build
component is NO-OP (but warning message is logged). Otherwise the actual orientation mask is
calculated as the intersection of the mask set in Screen Orientation component and the mask
which is set using SetOrientationMask method.

DeviceOrientationEvent is never being sent if the device is rotated to orientation which is not
allowed in the Screen Orientations build component.

Audio

Audio Authoring

Audio is authored in the Unity Editor using the same audio components that are available in
regular Unity, however Project Tiny Audio supports a subset of those components and only
supports certain properties within those components. Project Tiny supports the AudioListener
and AudioSource components.

AudiolListener
Project Tiny supports one AudiolListener component at a time. If there are zero listeners or two
or more listeners, then all 3d audio will be silent.

AudioSource

Project Tiny supports the following properties on an AudioSource component:
e AudioClip,
e Play On Awake,

Loop,

Volume,

Pitch,

Stereo Pan,

Spatial Blend,

Volume Rolloff (Linear and Logarithmic),

Min Distance, and Max Distance.

SpatialBlend only supports being set to 0.0 (fully 2d) or 1.0 (fully 3d) and this value is
only read at game object conversion time (build time) in the Editor as it affects which
audio components we create.

Audio Assets

Project Tiny Audio is not currently integrated with the existing Unity audio asset pipeline, but
importing pre-compressed content into Unity is supported. Uncompressed WAVs, Compressed
MP3s, and Compressed Vorbis files are all supported. Sounds should be imported into Unity in
the form you want in game. Once imported, the AudioClip properties are not supported, so
you can’t re-compress in a different format for each platform.

If one of your target platforms is the Web, then it is recommended that you use MP3s for all
audio content because this is supported by all web browsers and is also supported by our
mobile platforms (Android and iOS). If only targeting mobile platforms, Vorbis is probably a
better option since it achieves better compression rates.

At present, on startup on the Android and iOS platforms, all Project Tiny audio assets are
loaded and decompressed in memory. The benefit to this is that every time we play a sound, we
do not have to pay the CPU cost to de-compress it. On the web, we start with all sounds
compressed in memory and decompress each sound the first time it is played. When we hit a
memory limit for decompressed sounds, we start unloading them, prioritizing the least-recently
played and the largest sounds. That memory limit is currently hard-coded to 50MB.

Scripting with Audio Components

When we build a Project Tiny application, the game objects and components that we author are
converted into a different form for the runtime.

AudioListeners just become AudiolListeners, so that conversion is straight-forward.
AudioSources, on the other hand, can end up being converted into multiple runtime
components:

AudioSource: clip, volume, loop properties

Audio2dPanning: pan property

Audio3dPanning

AudioDistanceAttenuation: volume rolloff, min distance, max distance properties
AudioPitch: pitch property

The AudioSource component is always created, while the others are created optionally based
on the AudioSource authoring component’s property values. If SpatialBlend is set to greater
than 0.0 and VolumeRolloff is set to Linear Rolloff or Logarithmic rolloff, then we create an
Audio3dPanning and AudioDistanceAttenuation component; otherwise, we create an
Audio2dPanning component. If pitch is set to something other than 1.0, then an AudioPitch
component is created.

Alternatively, you can create Project Tiny audio components at runtime instead of relying on the
Editor’'s AudioSource conversion workflow described above.

To play an AudioSource, an AudioSourceStart component is added to the same entity as the
AudioSource component. To stop an AudioSource, an AudioSourceStop component should be
added to the same entity.

To adjust audio parameters at run-time, your C# code needs to adjust the properties on these
Tiny audio components.

Here is some DOTS example code to show how to play a sound:
var audioEntity = mgr.CreateEntity();

AudioSource source = new AudioSource();

source.clip = eClip;

source.volume = 1.0f;

source.loop = false;

mgr .AddComponentData(audioEntity, source);
mgr.AddComponent (audioEntity, typeof(AudioSourceStart));

When the sound starts to play, the AudioSystem removes the AudioSourceStart component.
Similarly, an AudioSourceStop component can be added to an entity that is currently playing a
sound to stop it. In this case, the AudioSystem will remove the AudioSourceStop component
when it actually stops the sound.

If you want to control left/right panning manually yourself, you can add the following code, and
then adjust panning.pan from -1.0f to fully play out of the left speaker to 1.0f to fully play out of
the right speaker:

Audio2dPanning panning = new Audio2dPanning();

panning.pan = 0.0f;
mgr .AddComponentData(audioEntity, panning);

For a 3d sound, instead of the Audio2dPanning component, you can use the Audio3dPanning
and AudioDistanceAttenuation components:
Audio3dPanning panning = new Audio3dPanning();

mgr .AddComponentData(audioEntity, panning);

AudioDistanceAttenuation distanceAttenuation = new AudioDistanceAttenuation();
distanceAttenuation.rolloffMode = AudioRolloffMode.Logarithmic;

distanceAttenuation.minDistance = 3.0f;
distanceAttenuation.maxDistance 50.0 ;
mgr .AddComponentData(audioEntity, distanceAttenuation);

With those 2 components, the AudioSystem will now automatically adjust the left/right speaker
volume based on the audioEntity’s 3d position in the world relative to the listener’s position and
orientation. It will also adjust the volume of the sound based on how far the audioEntity is away
from the listener. If it is 3 game units or less away, it will play at full volume. It will get quieter as
it moves further away, until it becomes silent at 50 game units away.

To adjust the pitch of a sound, you can add the following code:
AudioPitch pitchEffect = new AudioPitch();
pitchEffect.pitch = 1.1f;

mgr.AddComponentData(audioEntity, pitchEffect);

In the context of Tiny applications, where most applications are heavily memory-constrained,
changing the pitch of a sound can be a good way to get some variety out of one sound, instead
of using a container of 5-10 similar sounds. If you want to adjust the pitch as a sound is playing,
for example to achieve a Doppler effect, this pitch parameter can be modified as the sound is
playing back.

Audio Tips
Looping and MP3 files

Looping MP3 files does not result in perfect, seamless loops. The need for MP3 files really
comes from the Safari web browser, so if your project is not targeting the Web or it is targeting
the Web but you don’t need Safari support, then it is recommended that you instead use Vorbis
compression because it will give you better compression results and seamless looping.

If your project is targeting the Web and you want to support all browsers, then there are some
strategies that can be used to try to loop your sounds as well as possible:
- For short loops, use uncompressed audio to bypass the problem with MP3s.
- Try looping your MP3 file and listen to the results. Some clips loop better than others and
sometimes the results are acceptable.
- Set up your loops so they end in silence and only use looping when it is acceptable to
have a silent gap at loop time. This avoids the need for a seamless loop.
- For ambience, try layering multiple loops together. If they loop at different times,
sometimes this will help hide the silent gap in one of the loops.
- Don’t actually loop your sound, but cross-fade instead. Play the sound once. As it nears
completion, fade the volume out, and play a second instance of the same sound and
fade in the new instance.

DOTS Runtime Audio
Project Tiny Audio is just one audio engine that will ultimately be available in the DOTS

Runtime. There is another, more full-featured solution that is being developed that includes the
DOTS Audio package layered over the low-level DSPGraph package.

For authoring, in addition to new workflows, DOTS Audio will likely offer a similar conversion
from the existing AudioSource component in the Unity Editor. However, it will convert to its own,
different set of DOTS Audio components and will likely support more AudioSource properties
than Project Tiny Audio currently does.

On the scripting side, user code will all be interacting with these new DOTS Audio components,
instead of the Tiny Audio components described in this document. For this reason, if you are
heavily investing in Tiny audio scripting code, we recommend writing a thin layer of audio code
between your game code and Tiny Audio. If you have simple functions to do all of the basic,
common operations outlined above, it should be much easier to later change these
implementations to instead use DOTS Audio to give you more flexibility in the future.

JSON

Reading and writing JSON at runtime is enabled after referencing Unity.Tiny.JSON in your
game’s asmdef file. It utilizes FixedString in order to maintain burst compatibility in jobs, which
adds a limitation of 256 for the length of keys and 4096 characters for the length of string
values. These numbers are subject to change based on feedback in the future. For most use
cases, the general JSON container TinyJsonInterface allows for parsing, reading, writing, and
removing of JSON fields with a dictionary-like interface. For writing JSON objects from scratch,
TinyJSONStreamingWriter enables high performance emitting of JSON fields using a stack like
interface.

Reading JSON

Existing JSON input can be read with the TinyJsonInterface using its constructor:
Note: Due to current limitations, this constructor relies on a .NET string as input and is not burst
compatible. All other usages are burstable and use FixedString or HeapString.

From there, fields can be read by accessing the root level object and using the [] accessor.
Specific types are accessible using both implicit and explicit conversion operations.

float floatVal = json.Object["floatKey"];

bool boolVal = json.Object["boolKey"];

var floatVal = json.Object["floatKey"].AsFloat()

var boolVal = json.Object["boolKey"].AsBool () ;

Note: Calling “As*()” on an incorrect JSON type will result in a runtime exception. The type can
be obtained by calling tinyJsonObject.Type.

Nested object/array views are accessible directly from the root type. They can also be cached in
a variable.

bool boolValInNestedObject =

Jjson.Object["nestedField"] ["nestedBoolKey"];

int intValInArray = Jjson.Object["arrayField"][O0];

nestedObject = json.Object["nestedField"];
boolVal = nestedObject|["nestedBoolKey"];

array = Jjson.Object["arrayField"].AsArray ()
intValInArray = array[0];

Don't forget to call when you are finished.

Enumerating:
Iterating through both objects and arrays is supported.

JsonKeyValue Json.Object
JsonObj json.Object["arr

)
ayKey"] .AsArray())

Writing JSON

Writing JSON fields using the TinyJsoninterface works very similar to reading them. Since
TinyJsonlnterface is a mutable container, you can write JSON from scratch or modify / append
an existing JSON string depending on which constructor you use.

Much like a dictionary, when writing a key that doesn’t exist the class will create one. Otherwise,
the existing field is modified.

Jjson = TinyJsonInterface (Allocator.Temp) ;

rootObj = Jjson.Object;

Writing primitive / string types:

rootObj["boolKey"] =

rootObj["intKey"] = 21;
rootObj["floatKey"] = 10.3f;
rootObj [" '

stringKey"] = "Hello World!";

Writing nested objects: Nested objects can be read and modified just like the root object.
nestedObj = rootObj.CreateEmptyObjectField ("nestedObjKey") ;

Writing arrays: Arrays act like lists and do not have a limited capacity. Existing indices can be
modified or values can be appended.

array = rootObj.CreateEmptyArrayField ("arrayKey") ;
array.Append (1) ;
array.Append (10.3f) ;
array.Append () g
array.Append ("Hello World!") ;
nestedArray = array.AppendEmptyArray ()

objInArray = array.AppendEmptyObject () ;

Overwriting existing array values

Deleting:
You can remove a field from an object by specifying the field to remove:

json.Object.RemoveField ("key") ;

You can remove a value from an array by specifying an index:
array.RemoveAt (0) ;

Finalizing Write:
Fields will be written out to JSON in alphabetical order. The return value is a heap string.

var heapString = json.Todson () ;

Don't forget to call when you are finished.

High Performance JSON Writing

The TinyJsonStreamingWriter exists as an alternative to the TinyJsoninterface when users have
the option to write JSON from scratch and know the exact layout in advance. Performance is
much better at the cost of usability. Deletions or modifications are not supported. Writing to
nested objects and arrays works in a stack-like manner. That being said, for small, simple JSON
objects the TinyJsonStreamingWriter is easy to use and highly recommended.

Construction:

var writer = new TinyJsonStreamingWriter (Allocator.Temp) ;
Writing primitive / string fields:

writer.PushValueField ("boolKeyTrue", true);

writer.PushValueField("intKey", 20);

writer.PushValueField ("stringKey", "stringValue") ;
(

writer.PushValueField ("floatKey", 21.11f);

Writing nested objects:

writer.PushObjectField ("nestedObject") ;
writer.PushValueField ("nestedInt", 20);
writer.PushValueField ("nestedString", "hello");
writer.PopObject () ;

Writing arrays:

writer.PushArrayField ("key") ;
writer.PushValueToArray (true) ;

writer.PushValueToArray (20) ;
writer.PushValueToArray (11.11f);

writer.PopArray() ;

For objects inside arrays or nested arrays use |iElV:NaaEiaRey- SR A®) and
PushObjectToArray ()

Finalizing Write: Write to either a mutable JSON interface or to a heapstring.

var heapStringRes = writer.WriteToString() ;
var resultObj = writer.WriteToInterface()

writer.Dispose () ;

Note: Exceptions will be thrown at runtime if the user pops too many times, forgets to pop
enough times, tries to push object key/value fields to an array, or tries to push array values to an
object.

Tiny.Ul

[in progress]

The initial plan for Ul was to deliver a subset of Ul Toolkit (formerly known at Ul Element) but we
decided to postpone this approach and instead offer a lightweight Ul framework that is a subset
of Unity Ul (UGUI).

Authoring of Ul in the Editor is supported through Unity Ul (UGUI). Simple right click in the
Hierarchy and add Ul to a Canvas, or as a child of other elements.

All "Render Graph Modes™ are supported.

General Support:

e Canvas: Only Screen Space - Overlay. (This is the default mode and most useful. The
other modes require scaling, which we haven’t implemented yet.)

e Only Text Mesh Pro. Text is only supported through the Text Mesh Pro (TMP) variants of
the Ul controls
Positioning, anchoring, stretching all work. Rotation & scale do not.
Colors can be applied to components. Materials can not.
Canvas Scalar is not currently supported.

Supported Ul

e Panel
e Canvas

https://forum.unity.com/threads/renaming-uielements-to-ui-toolkit.854245/
https://docs.unity3d.com/Packages/com.unity.ugui@latest
https://docs.unity3d.com/Packages/com.unity.ugui@latest

e Button - TextMeshPro. Including source images and sprite sheets. “Color Tint”
transitions (Highlighted, Pressed, Selected, etc.) are supported, but not sprite swap.
(Sprite swap is planned for the future.)

e Text - TextMeshPro. Note that with text, the text field (yellow outline) needs to match

the Rectangle Transform (blue dots). Normally that’s the case; but the current system will
ignore any differences and produce unexpected results. Basic text options are
supported, including font, size, and color. Vertical and horizontal alignment are
supported. Multi-line has limited support.
Image. Slicing is fully supported, including from sprite sheets. Tiling is not supported.
Slider (with the same support/limitations as Buttons and Text). Direction, Min/Max,
Whole Number are supported.

e Toggle

Getting Events and Ul Elements

Note that the Ul entity tree at runtime is not quite the same as the tree you will create in the
editor. Currently, the discrepancy is primary when using text. However, future GUI elements will
increase the divergence.

There’s also just the general question of how to locate Ul elements without tagging them with
your own components.

To make this easy, Tiny.Ul provides a way to get an entity by its name in the editor:

Entity e = World.GetEXxistingSystem<ProcessUIEvents>().GetEntityByUIName("Info Text");

The other information you generally need is the UlState. You can iterate through it:

Entity eClicked = Entity.Null;

Entities.ForEach((Entity e, in UIState sr) =>
{
if (sr.IsClicked)

{
eClicked = e;

Or look it up for a particular element with GetUIStateByUIName().

"Hidden®
The RectTransform has a "Hidden" flag. If set, it will keep this entity, and all child RectTransform
entities, from rendering. This allows easy & fast (and efficient) visibility toggling.

Supported Features / Properties - Inspector view
All UGUI components:

Rect Transform

Canvas:

J Inspector

@ v Canvas
-

Tag Untagged

= Rect Transform

Some values driven by Can

Anchors
Min
Max

Pivot

Rotation

Scale

= +~ Canvas

Target Display

Additional Shader Channels

"M v Canvas Scaler
Scale Mode

Scale Factor

Reference Pixels Per Unit

IO + Graphic Raycaster

gnore Reversed Graphics
Blocking Objects

Blocking Mask

Layer Ul

Screen Space - Overlay

0
Display 1
Mixed...

A Shader channels Normal and Tang

Constant Pixel Size

v
None
Everything

Add Component

=

Static =

Buttons:
® Button

nteractable v
Transition Color Tint

Target Graphic =l Stretchy Button (Image)
Normal Color

Highlighted Color

Pressed Color

Selected Color

Disabled Color

Text:
NOTE that you *can* set the text properties (bold, italic, etc.) in the Font Asset.

v TextMeshPro - Text (Ul)

Text Input

ppum=0.5

Main Settings

Font Asset LiberationSans SDF (TMP_Font Asset)
LiberationSans SDF Material
B | U S ab
Font Size 24

Auto Size

Vertex Color

Qlo ddle

Alignment

Ul Code snippets

This section includes various code snippets to illustrate common actions.

Modifying a button's rect transform based on its state (Make sure to name the Ul element
something unique in the inspector):
uiSys = World.GetExistingSystem<ProcessUIEvents>();

buttonEntity = uiSys.GetEntityByUIName("StartButton");
buttonState = GetComponent<UIState>(buttonEntity);
if (buttonState.IsClicked)
{
buttonTransform = GetComponent<RectTransform>(buttonEntity);
buttonTransform.Hidden = 5

SetComponent (buttonEntity, buttonTransform);

Change a button color:
var selectableInfo = GetComponent<Selectable>(uiEntity)

selectable.NormalColor = float4(1, 0, 1, 0);
SetComponent (uiEntity, selectableInfo);

Setting text:
uiSys = World.GetExistingSystem<ProcessUIEvents>();

textEntity = uiSys.GetEntityByUIName("MyText");
TextLayout.SetEntityTextRendererString(EntityManager, textEntity, "HELLO,

WORLD") ;

Skinned Mesh Renderer and BlendShape

After reading this introduction, we recommend you explore the sample project available
here:

https://aithub.com/Unity-Technologies/ProjectTinvSamples/tree/master/BlendShapeDemo

B " Unity - DOTS Project - O X

-9
©)

.

Overview

SkinnedMeshRenderer is a minimalistic conversion and mesh deformation system that supports
mesh skinning and blendshape. It supports CPU and GPU mesh skinning. Blendshape uses
CPU only.

For mesh skinning, on the conversion side, we will generate several SkinnedMeshRenderer
entities, those SkinnedMeshRenderer entities are used for switching CPU mesh skinning or
GPU mesh skinning at the runtime. We will convert only one entity for CPU mesh skinning. But
for GPU mesh skinning, due to the limitation of uniform buffer size, we may split into several
entities based on the number of bones which the model have.

You can check the rules below:

https://github.com/Unity-Technologies/ProjectTinySamples/tree/master/BlendShapeDemo

For blend shape, on the conversion side, we just convert all the blend shape weights from
SkinnedMeshRenderer and the blend shape data will be converted from mesh. Also it will share
with other SkinnedMeshRenderer entities.

At Runtime, we will use the GPUSKinning setting in Displaylnfo to choose CPU or GPU
skinning. Also it will choose corresponding SkinnedMeshRenderer entities to do the mesh
skinning based on canUseCPUSKkinning and canUseGPUSkinning.

Getting Started

Just adding the SkinnedMeshRenderer component, setup the mesh, choose the material with
shader Universal Render Pipeline/Lit or Universal Render Pipeline/Unlit

The Runtime API

Change BlendShape.
You can add a dynamic buffer with component SetBlendShapeWeight, then add all the
modifications to the buffer.

EntityCommandBuffer ecb = EntityCommandBuffer(Allocator.Temp);

Entities.ForEach((Entity e, DynamicBuffer<BlendShapeWeight>

smrBlendShapeWeightBuffer, ref SkRinnedMeshRenderer smr) =>

{
SetBlendShapelWeight setWeight = SetBlendShapeWeight();
setWeight.NameHash = BlendShapeChannel .GetNameHash("blendShapel.Mesh3");

setWeight.ModifiediWeight = O;

DynamicBuffer<SetBlendShapeWeight> setWeightsBuffer =
ecb.AddBuffer<SetBlendShapeWeight>(e);

setWeightsBuffer.Add(setWeight);
}).WithoutBurst().Run();

ecb.Playback(EntityManager);

ecb.Dispose();

Conversion Support

Here’s an overview of the features that are available (converted to Entities).
SkinnedMeshRenderer

%, v Skinned Mesh Renderer

45 Edit Bounds

Center X -0.014049 Y 2459 Z -55.03963
Extent X 76.31505 Y 105.489 Z 58.40537
BlendShapes

Not BlendShape weight range is clamped. This can be ed in Player
Settings.

blendShape1.Mesh
blendShape1.Mesh1
blendShapel1.Mesh2
blendShapel1.Mesh3
blendShapel1.Mesh4
blendShape1.Mesh5

All the blend shape weights will be converted and the blend shape name will convert into a
name hash.

% v Skinned Mesh Renderer

{5 Edit Bounds

Center X -0.014049 Y 2.459 Z -55.03963
Extent X 76.31505 Y 105.489 Z 58.40537
BlendShapes

Q Note that BlendShap: ight range is clamped. This can be disabled in Player

blendShapel.Mesh
blendShapel1.Mesh1
blendShape1.Mesh2
blendShape1.Mesh3
blendShapel.Mesh4
blendShapel1.Mesh5

Quality v Auto
Update When Offscreen 1Bone

2 Bones

Mesh
4 Bones
Root Bone INUIIS | i 1aiioiviiiig

Quality Auto, the number of bones will be determined by QualitySetting.skinWeights. Others
fixed options can be selected.

%, v Skinned Mesh Renderer

45 Edit Bounds

Bounds
Center X -0.014049 Y 2.459 Z -55.03963
Extent X 76.31505 Y 105.489 Z 58.40537
BlendShapes

that BlendShape weight range is clamped. This can be disabled in Player

blendShapel.Mesh
blendShapel.Mesh1
blendShape1.Mesh2
blendShapel1.Mesh3
blendShapel1.Mesh4
blendShape1.Mesh5
Quality Auto
Update When Offscreen v
Mesh I normal:Mesh
Root Bone None (Transform)
Materials
Lighting Off
Cast Shadows v On

Probes Two Sided

Additional Settings Sl L

ShadowCastingMode will also convert to corresponding enumeration

Mesh

Vertices: 14462 (0.6 MB)
Position Float32 x 3 (12 bytes)
Normal Float32 x 3 (12 bytes)
Tangent Float32 x 4 (16 bytes)

Indices: 20208, UInt16 format (39.5 KB)
1 submesh:
#0: 6736 triangles (20208 indices starting from 0)

Blend Shapes: 6

#0: blendShapel1.Mesh (1 frames)

#1: blendShape1.Mesh1 (1 frames)

#2: blendShape1.Mesh2 (1 frames)
#3: blendShapel1.Mesh3 (1 frames)
#4: blendShapel1.Mesh4 (1 frames)
#5: blendShape1.Mesh5 (1 frames)

Other
Bounds Center (-0.01405, 2.459, -55.04)
Bounds Size (152.6, 211, 116.8)
Read/Write Enabled False

All the blend shape data in mesh will be also converted.

Frequently Asked Questions

At runtime, | get an error about “Cannot find Typelndex for type hash”

For example: “System.ArgumentException: Cannot find TypelIndex for type hash
9701635103632511287. Ensure your runtime depends on all assemblies defining
the Component types your data uses.”

The conversion systems generated data that refers to a type that is not present in your output
executable. You can get the name of the actual type by looking in the build output directory
(normally in the “Builds” folder inside your project folder, and then in a folder named the same
as your build configuration), inside “Logs/SceneExportLog.txt”. Looking for the given Typelndex
shows:

Ox86a321b9ac79d137 - 9701635103632511287 - Unity.Rendering.RenderBounds

Which gives you the “Unity.Rendering.RenderBounds” type name. There are two fixes:

1. If the output is actually supposed to use this type, then ensure that the root assembly
references the assembly that contains the type.

2. If the output is not supposed to use this type, then you can filter out the conversion
system that is generating it by adding a “Conversion System Filter” build configuration
component to work around this:

a. Add a “Conversion System Filter Settings” component

i. Setthe Size to 1.

ii. Select the assembly you want to add in the first slot.
Note that the conversion systems from the hybrid rendering assembly has been automatically
filtered out using the system flag WorldSystemFilterFlags.HybridGameObjectConversion in a
dots runtime build. Only conversion systems using
WorldSystemFilterFlags.GameObjectConversion or
WorldSystemFilterFlags.DotsRuntimeGameObjectConversion are running at runtime.

Is there a precise roadmap or launch date for Project Tiny?

We still don't have a firm date for our "V1" enabling hypercasual style scenarios. We want to
ensure first that the feature set is complete enough to enable projects to go in production, so the
cut line isn't defined yet. We'll share an update as soon as possible so early adopters can look
at our plans and provide more feedback.

My code changes are not appearing in my game when building from Rider!

Ensure you do not have “Resharper Build” enabled:
e File > Settings > Build/Execution/Deployment > Toolset and Build
e Ensure “Use ReSharper Build" is unchecked

Build, Execution, Deployment @ Toolset and Build

P Appearance 8 Behavior
Keymap

P Editor
Plugins

Environment

Auto detected (16.0) - C:\P Files (x86)\Mi f io\2019\Pni Custom...

P Version Control

¥ Build, Execution, Deployment

B Unit T

Build Engine

» Languages 8 Frameworks

» Tools
att:
Build parameters

? Manage Layers

Resharper Build cannot deduce the final executable produced by our build pipeline, and will not
detect that the application should be rebuilt.

Known Issues

The following issues will be fixed in a future release:

asm.js builds: low performance in Chrome on all build modes.

o Workaround: use WebAssembly
Rendering in the scene view may look different than the runtime

o Ongoing work to visually unify the renderers. Will be addressed over time in

future releases.

The Editor platform must be set to "PC, Mac & Linux Standalone’, unexpected errors
may showup if the Editor is switched to different platforms
Managed debugger may cause memory leaks on development and debug builds.

o We are actively working on this issue and will be resolved in the next release
Fixed timestep may take longer time per frame on Mac dotnet builds

o Workaround: Use lI2cpp builds

o It has been fixed in 0.33

Cancel

	Preview 0.32- DOTS Runtime & Project Tiny: Getting Started
	Document Change log
	What Is Project Tiny and DOTS Runtime?
	System Requirements
	For Development
	For Runtime
	About Linux support

	Filing Bugs and Providing Feedback
	Getting started: use Sample Projects
	Feature Status Summary

	Anatomy of a Tiny Project
	Scenes and Subscenes
	GameObject and Behavior Authoring
	The “Root Assembly”
	DOTS .NET Subset
	Build Configurations
	Authoring and Editor-only Code
	Runtimes and Packages

	Setting up a New Project
	Project and Package Setup
	Code Setup
	Scene Setup
	Build Setup

	Running and Debugging
	Build Configurations
	DOTS C# Solution
	.NET vs il2cpp Builds
	Debugging with a DOTS Runtime/Project Tiny build
	Debugging conversion systems:
	

	Using Debug.Log()
	Web Build & Run
	Profiling
	Play-in-Editor

	GameObject/DOTS Features and properties mapping
	Camera
	Mesh Renderer
	Material
	Light
	Supported built-in functionalities:
	Additional functionalities
	Ambient Light

	Texture Compression Settings
	Texture Importer Settings:
	Text Rendering
	Creating a compatible font asset
	Displaying text in a scene
	Creating text in the editor
	Creating text dynamically at runtime
	Changing text at runtime

	3D FOG

	2D
	GameObject conversions
	Sprite
	Sprite Renderer
	

	2D Entities Physics

	Particle System (3D)
	Overview
	Creating Particle Systems in the Editor
	Creating Particle Systems from Script
	Supported Features
	Varying Properties Over Time
	Main Module
	Emission Module
	Shape Module
	Renderer Module

	Summary of the Modules and properties supported at the moment:

	Shaders
	Shader Conversion
	Supported Features
	Uniforms
	Supported Types
	Unity Built-in Uniforms
	Uniform Buffers
	Samplers

	Vertex Attributes
	Include Files
	Unity Built-in Include Files

	ShaderLab
	Variants
	ShaderGraph

	Platform Specific features
	Game save system
	Suspend, Resume & Quit Events (iOS, Android)
	Accelerometer/Gyro (iOS & Android)
	Multi-touch (iOS & Android)
	Native Plugins (iOS & Android)
	Android
	iOS

	Single HTML File Output (Web)
	Interacting with browser scripting (Javascript/C# interoperability)
	JavaScript plugins
	Calling JavaScript functions from C# scripts
	Working with arrays
	Calling C# callbacks from JavaScript
	Adding raw JavaScript code to the build

	Using web templates
	Web template structure
	Creating a custom web template

	Screen orientation
	Screen & Device Orientation APIs
	Screen Orientations build component

	Audio
	Audio Authoring
	Audio Assets
	Scripting with Audio Components
	Audio Tips

	JSON
	Reading JSON
	Writing JSON
	High Performance JSON Writing

	Tiny.UI
	General Support:
	Supported UI
	Getting Events and UI Elements
	Supported Features / Properties - Inspector view
	UI Code snippets

	Skinned Mesh Renderer and BlendShape
	Overview
	Getting Started
	The Runtime API
	Conversion Support

	Frequently Asked Questions
	At runtime, I get an error about “Cannot find TypeIndex for type hash”
	Is there a precise roadmap or launch date for Project Tiny?
	My code changes are not appearing in my game when building from Rider!

	Known Issues

